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Abstract—Total hip arthroplasty (THA) is the most effective
surgical intervention for end-stage hip diseases, yet
approximately 10-15% of patients require revision surgery due
to biomechanical complications such as stress shielding and
aseptic loosening. These complications stem from mechanical
environment mismatch between implants and host bone, while
patients exhibit substantial inter-individual variations in
skeletal geometry and bone quality that standard implants
cannot accommodate. This study proposes an innovative "3D
Printing-Neural Network Co-modelling" (3PNN) framework to
enable patient-specific preoperative biomechanical prediction
and implant design optimization. First, we developed a
biomimetic bone matrix material with tunable mechanical
properties, achieving elastic modulus spanning the complete
range from cancellous to cortical bone (0.1-20 GPa). Second,
based on five key geometric descriptors (neck-shaft angle,
acetabular inclination, femoral anteversion, canal flare index,
and cortical thickness index), we established a parametric
pelvis-femur model and collected 95 models covering patient
diversity through Latin hypercube sampling. Subsequently, we
fabricated this biomimetic bone model library using multi-
material 3D printing and measured stress distributions after
standard prosthesis implantation via digital image correlation
(DIC), acquiring 120 high-quality experimental datasets. Based
on these data, we trained a bidirectional 3PNNmachine learning
framework: Forward-3PNN rapidly predicts stress distribution
from geometric parameters (R2=0.89, MAPE=9.2%), while
Inverse-3PNN inversely infers bone quality from mechanical
response (r=0.87 vs DXA). Parametric sensitivity analysis
revealed that neck-shaft angle and canal flare index are the most
critical factors influencing stress distribution. In validation with
42 retrospective clinical cases, this framework successfully
guided personalized implant selection and identified high-risk
patients. By integrating the fidelity of physical models with the
efficiency of machine learning, this study provides a novel
paradigm for personalized medical device design and digital
twin healthcare systems, demonstrating significant clinical
translational value and design innovation insights.
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1. INTRODUCTION

Total hip arthroplasty (THA) is one of the most successful
and effective surgical interventions for treating end-stage hip
diseases such as osteoarthritis and femoral head necrosis [1].
More than 2 million THA procedures are performed globally
each year, and this number is projected to continue rising with
population aging [2]. Despite THA’s tremendous success in
relieving pain and restoring joint function, its long-term
efficacy still faces challenges. Approximately 10-15% of
patients may require revision surgery within 10-15 years post-
operation due to complications such as aseptic loosening,
stress shielding, and periprosthetic fractures [3][4]. Revision
surgery not only imposes enormous physical and economic
burdens on patients but also carries significantly higher
surgical difficulty and complication risks compared to
primary arthroplasty [5]. Therefore, improving the long-term
success rate of primary THA and extending implant lifespan
represent critical issues urgently requiring resolution in
orthopedic medicine and biomedical engineering.

The root causes of these complications are predominantly
related to biomechanical environment mismatch at the
implant-bone interface [6]. According to Wolff's Law, bone
tissue can dynamically remodel itself in response to
mechanical stimuli [7]. When a high-stiffness metallic
implant (such as titanium alloy with elastic modulus ~110
GPa) replaces relatively compliant bone tissue (cortical bone
~10-20 GPa, cancellous bone ~0.1-2 GPa), the implant bears
most of the load, leading to significantly reduced
physiological mechanical stimulation in surrounding bone
tissue—a phenomenon termed "stress shielding" [8].
Prolonged stress shielding triggers bone loss and resorption in
the proximal femur, compromising implant stability and
ultimately causing aseptic loosening [9]. Conversely,
inappropriate implant sizing or positioning may induce
localized stress concentration, increasing the risk of
periprosthetic fractures [10]. Patients exhibit enormous
variations in skeletal geometry, bone density, and bone
quality, making standardized implants incapable of
accommodating all individuals—this represents the
fundamental cause of mechanical environment mismatch and
postoperative complications [11]. Therefore, achieving
personalized implant design and preoperative planning to
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make post-implantation mechanical environments as close as
possible to physiological states is considered an effective
approach to addressing these problems.

To achieve this goal, the core challenge lies in accurately
predicting the long-term mechanical response of specific
patients after implanting specific prostheses preoperatively.
Currently, finite element analysis (FEA) is the primary tool
for studying biomechanical behavior of bone-implant systems
[12]. Through patient computed tomography (CT) data, high-
precision three-dimensional geometric models can be
constructed to colloct stress distributions data under different
loading conditions. However, patient-specific FEA modeling
processes are complex and time-consuming, requiring
specialized expertise for mesh generation, material property
assignment, and boundary condition specification, making
routine clinical application difficult [13][14]. Additionally, in
vitro experimental models such as cadaveric bones or
commercial synthetic bones are commonly used for
mechanical testing, but cadaveric bones have limited
availability, large inter-individual variability, and ethical
concerns, while synthetic bones have uniform mechanical
properties unable to test the diversity of real patient skeletons
[15].

In recent years, machine learning (ML), particularly deep
learning, has demonstrated tremendous potential in medical
image analysis, disease diagnosis, and risk prediction. Some
studies have attempted to use machine learning to directly
predict fracture risk or assess bone density from imaging data,
but these purely data-driven models often lack interpretability
ofmechanical mechanisms, functioning as "black boxes" with
questionable generalization capability and reliability in
complex biomechanical scenarios. Combining physical
models with data-driven methods is considered an effective
approach to overcoming their respective limitations. For
example, physics-informed neural networks (PINNs)
incorporate physical governing equations as regularization
terms into neural network loss functions, though their
application under complex geometries and boundary
conditions remains challenging.

Therefore, current research exhibits a clear gap: the
absence of a methodological framework capable of efficiently
and accurately predicting patient-specific biomechanical
responses while covering real-world patient diversity.
Existing methods are either too time-consuming (FEA), lack
interpretability (pure ML), or cannot simulate individual
differences (traditional in vitro experiments). This study aims
to fill this gap by the folowing experiment that constructing a
3D-printed biomimetic bone model library covering patient
geometric and material parameter spaces, combined with
machine learning co-modeling, can create a framework
possessing both physical fidelity and predictive efficiency.

The objective of this study is to develop and validate a "3D
Printing-Neural Network Co-modelling" (3PNN) framework
for personalized biomechanical design of hip implants.
Specifically, we first developed a biomimetic bone matrix
material with tunable mechanical properties and established a
parametric pelvis-femur geometric model. Subsequently, we
3D-printed a biomimetic bone model library containing 95
different geometric features and measured their stress
distributions after implanting standard prostheses through
mechanical experiments. Finally, we utilized these data to
train a bidirectional neural network model: a "forward model"
(Forward-3PNN) capable of rapidly predicting stress
distribution from patient geometric parameters, and an
"inverse model" (Inverse-3PNN) capable of inferring patient
bone quality information from mechanical responses. This
study focuses on preoperative mechanical prediction and

implant selection optimization, not involving surgical
techniques or long-term biological responses. We expect this
framework to provide clinicians with a rapid, accurate
preoperative planning tool and offer a novel paradigm for
personalized medical device design innovation.

The organization of this paper is as follows: Section 2
reviews related research on hip joint biomechanics, modeling
methods, 3D printing, and machine learning applications.
Section 3 details the design of biomimetic bone matrix
materials, parametric geometric modeling, construction of the
3D-printed biomimetic bone model library, experimental
stress distribution measurement methods, and development of
the 3PNN machine learning framework. Section 4 presents
material performance characterization, model accuracy
validation, 3PNN model performance evaluation, and clinical
data validation results. Section 5 provides in-depth discussion
of research findings' clinical significance, methodological
advantages, limitations, and future directions. Finally, Section
6 summarizes the entire study.

2. RELATED WORK

To clearly position the innovation of this study, this
section systematically reviews related research from multiple
dimensions including mechanical problems after hip
arthroplasty, existing modeling and analysis methods, and
emerging applications of machine learning and 3D printing
technologies, explicitly identifying current research gaps.

2.1. Core Biomechanical Problems After Hip
Arthroplasty

The long-term success of total hip arthroplasty largely
depends on stable biomechanical integration between the
implant and host bone. However, two core mechanical
problems—stress shielding and aseptic loosening—seriously
threaten implant long-term survival. Stress shielding is a
phenomenon where high-stiffness prostheses "shield"
surrounding bone tissue from physiological loads it should
bear, leading to decreased bone density and bone resorption
[8]. Pioneering research clearly identified stress shielding as
the primary cause of proximal femoral bone loss and explored
the possibility of using flexible material prostheses to alleviate
this problem [1]. A study further revealed microscopic
mechanisms of bone remodeling driven by stress shielding
through computer simulation, demonstrating that bone density
redistributes according to local strain environments [2]. These
studies established our understanding of stress shielding
phenomena, but how to precisely predict and intervene for
individual differences remains a clinical challenge.

Aseptic loosening is the most common cause of long-term
THA failure, occurring through a complex bio-mechanical
coupling process [4]. On one hand, micromotion at the
implant-bone interface prevents bone ingrowth and may lead
to fibrous tissue formation, thereby destroying mechanical
stability [5]. On the other hand, wear particles from implants
trigger macrophage-mediated inflammatory responses,
causing osteolysis and further exacerbating loosening [4].
Researchers emphasized the important role of host factors
(such as bone quality and immune response) in aseptic
loosening processes [4]. Although understanding of loosening
mechanisms is relatively mature, most research remains at
population-level statistical analysis or qualitative description,
lacking quantitative tools capable of predicting individual
loosening risk.
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2.2. Modeling and Analysis Methods for Bone-Implant
Systems

To study the aforementioned biomechanical problems,
researchers have developed various modeling and analysis
methods, primarily divided into finite element analysis and in
vitro experimental models. Finite element analysis (FEA) is
currently the most widely applied tool. Through patient CT or
MRI images, highly personalized three-dimensional bone
models can be constructed to simulate stress and strain
distributions after implant placement [12]. This enables
researchers to evaluate the effects of different prosthesis
designs, sizes, or placement positions on biomechanical
environments computationally. However, as Pankaj pointed
out, patient-specific modeling faces numerous challenges,
including precisely segmenting geometric models from
medical images, accurately assigning material properties
(usually relying on empirical relationships between CT gray
values and bone density), and reasonably setting complex
boundary conditions and loads [15]. These steps are not only
time-consuming and laborious but also potentially introduce
uncertainty at each step, affecting final result reliability.
Therefore, while FEA is a powerful research tool, its high
computational cost and dependence on specialized skills limit
its application in routine clinical decision-making.

In vitro experimental models provide another validation
approach. Traditionally, researchers use cadaveric or animal
bones for mechanical testing, but these samples have limited
availability, large inter-individual variability, ethical
controversies, and difficulty in standardization [16]. To
overcome these limitations, researchers developed
standardized synthetic bone models with good batch
consistency, facilitating comparative studies [3]. However,
these synthetic bones have uniform material properties,
unable to simulate the complex heterogeneity of real bone
tissue and inter-patient individual differences. Recently, 3D
printing technology has made manufacturing more realistic
anatomical models possible [17]. Researchers can print
models completely consistent with patient anatomical
structures for preoperative planning and surgical rehearsal.
However, most of these models are only morphologically
realistic, with mechanical properties far from real bone tissue,
unsuitable for functional biomechanical testing.

2.3. Potential of Machine Learning and 3D Printing in
Emerging Applications

Machine learning, particularly deep learning, is rapidly
penetrating various orthopedic fields. Numerous studies
utilize machine learning algorithms based on radiological
images, clinical data, or biomarkers to predict osteoporosis
risk, identify low bone density populations, or predict hip
fracture incidence [18]. These studies demonstrate AI's
powerful capability in processing high-dimensional complex
data and identifying hidden patterns. However, these models
are mostly "black boxes," lacking transparency in decision-
making processes and interpretability of mechanical
mechanisms. Combining machine learning with finite element
analysis is a promising direction for improving interpretability.
For example, a study reviewed research utilizing machine
learning to accelerate finite element computations or replace
certain steps to achieve real-time biomechanical simulation
[19]. Researchers integrated deep neural networks with finite
element methods to analyze biomechanical behavior of human
aortas. These studies inspire us to achieve deeper fusion of
physical models with data-driven methods.

Meanwhile, 3D printing (or additive manufacturing)
technology is revolutionizing medical device design and

manufacturing. It can not only manufacture personalized
implants with complex porous structures conducive to bone
ingrowth [19] but also create biomimetic tissue engineering
scaffolds. By adjusting printing parameters or material
compositions, scaffold porosity, pore size, and mechanical
properties can be controlled to mimic natural bone structure
and function [20]. For example, researchers have explored
adding bioactive ceramics like hydroxyapatite (HA) to
polymer matrices such as PDMS to manufacture composite
materials for better biocompatibility and mechanical
properties [21][22]. These studies provide a foundation for
developing biomimetic bone matrix materials with tunable
mechanical properties.

2.4. Research Gaps and Innovation of This Study
Existing research exhibits several prominent gaps that

hinder the advancement of clinical biomechanical prediction
and personalized medical applications. Physical models and
data-driven methods remain largely separated: finite element
analysis (FEA) methods, while grounded in fundamental
physical principles, suffer from low computational efficiency.
In contrast, pure machine learning approaches offer high
efficiency but lack constraints from physical mechanisms and
thus exhibit poor interpretability, leading to insufficient deep
integration between the two paradigms. Functional in vitro
model libraries are also lacking: current in vitro models either
fail to simulate individual differences (e.g., synthetic bones)
or cannot support functional testing (e.g., conventional 3D-
printed models), resulting in a dearth of physical model
libraries that can simultaneously cover the geometric and
material property diversity of patients for mechanical
evaluation. Additionally, direct mapping tools from medical
imaging to biomechanical prediction are absent. Clinically,
there is an urgent need for tools that can directly extract key
information from patient CT images and rapidly, accurately
predict postoperative mechanical responses, a demand that
existing methods struggle to meet.

To address these gaps, this study proposes a novel solution
from the perspective of design-driven interdisciplinary
innovation, with its innovations primarily reflected in four
aspects. Methodologically, this study achieves the first
integration of a "3D-printed physical model library" with
"machine learning" for co-modeling, developing a physics-
data fusion 3PNN framework. This framework leverages the
fidelity of physical models and the predictive efficiency of
machine learning, realizing complementary advantages
between the two. In terms of materials, a biomimetic bone
matrix material with tunable mechanical properties is
developed, whose elastic modulus covers the full range from
cancellous to cortical bone, providing a material foundation
for constructing functional biomimetic bone model libraries.
For parametric modeling, a parametric pelvis-femur model
incorporating five key geometric descriptors is established.
This parameter system efficiently captures the core individual
characteristics that induce biomechanical differences, serving
as a bridge connecting clinical imaging and model
construction. Regarding the prediction framework, the
constructed 3PNN framework not only forward-predicts stress
distribution from geometric parameters but also inversely
infers bone quality information from mechanical responses,
thereby offering more comprehensive support for clinical
decision-making.
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3. METHODS

This study employs a multi-stage approach combining
physical experiments with data modeling. The overall
research strategy is: first, develop and characterize a
biomimetic bone matrix material with tunable mechanical
properties; second, design and 3D-print a biomimetic bone-
implant model library covering patient diversity based on
clinically relevant geometric parameters; then, measure stress
distribution data of this model library through in vitro
mechanical experiments; finally, utilize these data to train and
validate a bidirectional 3PNN machine learning framework,
and evaluate its potential application value using retrospective
clinical data.

3.1. Design and Fabrication of Biomimetic Bone Matrix
Material

To replicate the wide mechanical property range of natural
bone, from cancellous to cortical tissue (elastic modulus 0.1–
20 GPa), a polydimethylsiloxane (PDMS)-based multiphase
composite material was designed. The central concept of this
design is to regulate the macroscopic mechanical performance
by precisely controlling the internal porosity and composition
of the composite.

The biomimetic bone matrix was composed of PDMS
(Sylgard 184, Dow Corning) serving as the elastic matrix,
hydroxyapatite (HA, <200 nm, Sigma-Aldrich) nanoparticles
functioning as bioactive reinforcement to simulate the mineral
component of bone, and micron-sized titanium (Ti, < 45μm,
Sigma-Aldrich) powder providing stiffness enhancement. To
imitate the vascular and marrow cavity structures in natural
bone, an interconnected microchannel network was
introduced through a sacrificial template technique.

In the fabrication process, Pluronic F127 hydrogel ink was
first printed into a predefined microchannel network structure
using a temperature-controlled direct-write 3D printer on a
−20℃ cold plate. The designed porosity ranged from 10 % to
85 %, adjusted by varying the printing path spacing. The
PDMS prepolymer and curing agent were then mixed at a 10:1
mass ratio, followed by the addition of HA and Ti powders at
mass fractions from 0 % to 30 %. The mixture was
homogenized in a planetary centrifugal mixer to form a
uniform composite slurry. The slurry was cast into molds
containing the sacrificial template, vacuum degassed, and
cured in an 80 ℃ oven for two hours. After curing, the
samples were immersed in 4℃ deionized water for 24 hours
to dissolve and remove the Pluronic F127 template, generating
the interconnected microchannel networks. Finally, the pores
were filled with saline under vacuum to emulate the in vivo
physiological environment.

Through this process, a series of composite samples with
varying porosities and compositions were successfully
fabricated for subsequent mechanical characterization.

3.2. Parametric Pelvis-Femur Geometric Modeling
To efficiently capture the anatomical variability that drives

inter-individual biomechanical differences, a parametric
pelvis–femur geometric model was developed instead of
relying on complete patient-specific bone reconstructions.
Based on orthopedic literature and clinical consultations, five
key geometric descriptors were identified as the dominant
factors influencing post–total hip arthroplasty (THA)
mechanical behavior: the neck–shaft angle (NSA), acetabular

inclination (AI), femoral anteversion (FA), canal flare index
(CFI), and cortical thickness index (CTI).

The NSA, defined as the angle between the femoral neck
and shaft axes in the coronal plane, affects femoral head offset
and consequently influences the hip joint moment arm and
neck stress distribution, typically ranging from 120° to 135°.
The AI, measuring the orientation of the acetabular cup
opening relative to the horizontal plane, determines the
femoral head coverage and thus joint stability, with a common
range of 35° to 50°. The FA represents the anterior torsion of
the femoral neck relative to the posterior condylar axis in the
transverse plane, influencing lower limb rotational alignment
and joint congruency, generally within 8° to 20°. The CFI,
defined as the ratio of proximal metaphyseal canal width to
isthmus width, quantifies the “champagne-flute” morphology
of the femoral canal, which critically affects the initial fixation
stability between the femoral stem and host bone, ranging
from 2.5 to 5.5. Finally, the CTI, representing the ratio of
cortical bone thickness to femoral shaft diameter 1 cm below
the lesser trochanter, serves as an important indicator of bone
quality and strength, typically between 0.3 and 0.7.

To ensure representative coverage of the five-dimensional
parameter space, Latin Hypercube Sampling (LHS) was
employed to assess 95 independent parameter combinations,
forming the foundation of the biomimetic bone model library
used in subsequent experiment.

3.3. Construction of 3D-Printed Biomimetic Bone
Model Library

Based on the above 95 geometric parameter sets, we used
CAD software (SolidWorks) and scripting automation to
examine corresponding 95 three-dimensional pelvis-proximal
femur models. Models were appropriately simplified,
retaining main structures affecting macroscopic mechanical
behavior while removing minor anatomical details not
affecting stress distribution. Subsequently, these models were
printed using a multi-material 3D printer (Stratasys J750).
During printing, based on CTI and CFI values, biomimetic
bone matrix materials with different mechanical properties
(achieved by adjusting porosity) were assigned to different
model regions: regions with lower CTI values corresponding
to thinner cortical bone used high-stiffness materials (such as
15 GPa); regions with wide canal morphology (high CFI
values) used low-stiffness materials (such as 0.5 GPa) for
cancellous bone regions. Through this approach, we
constructed a biomimetic bone model library containing both
geometric diversity and material property diversity.

3.4. Stress Distribution Measurement
To obtain data required for training machine learning

models, we conducted in vitro mechanical testing on each
model in the library. A standard-sized femoral stem prosthesis
(Zimmer Biomet, M/L Taper) was implanted into each 3D-
printed femoral model in a standard posture. Subsequently, the
assembly was fixed on an MTS material testing machine,
examining single-leg stance posture with a 2500N axial load
applied.

We used a three-dimensional digital image correlation
(3D-DIC) system (GOM ARAMIS) to non-contact measure
full-field strain distribution on femoral surfaces during
loading. Before testing, random black-and-white speckle
patterns were sprayed on each model surface. The DIC system
calculates three-dimensional displacement and strain at each
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surface point by capturing high-resolution images before and
after loading and tracking speckle pattern displacement. Based
on measured strain fields (ε) and pre-characterized material
elastic modulus (E), stress fields (σ) were calculated using
Hooke's law

(σ=E×ε) (1)

We focused on average stress in Gruen zones (dividing the
proximal femur into 7 regions) as key indicators
characterizing stress distribution, collecting 120 experimental
datasets (some models underwent repeated testing).

3.5. 3PNN Machine Learning Framework
Based on collected experimental data, we constructed a

bidirectional 3PNNmachine learning framework consisting of
a forward model and an inverse model.

 Forward-3PNN: This model aims to predict post-
implantation stress distribution from patient geometric
parameters. Its input layer has 6 neurons,
corresponding to 5 geometric descriptors and 1
equivalent elastic modulus representing bone quality.
The output layer has 7 neurons, corresponding to
average stress values in the 7 Gruen zones. We
employed amultilayer perceptron (MLP) network with
3 hidden layers containing 64, 128, and 64 neurons
respectively, with rectified linear unit (ReLU)
activation functions. The model uses mean squared
error (MSE) as the loss function and employs the
Adam optimizer for training.

 Inverse-3PNN: This model aims to inversely infer
difficult-to-directly-obtain bone quality information
from measurable mechanical responses. Its input layer
has 7 neurons (average stress in 7 Gruen zones), and
the output layer has 1 neuron representing equivalent
bone density or CTI. The network structure is similar
to Forward-3PNN, including 3 hidden layers (64, 96,
64 neurons).

 Model training and validation: We randomly divided
the 120 datasets from 95 models into training,
validation, and test sets at a 70:15:15 ratio. During
training, we employed 10-fold cross-validation to
optimize model hyperparameters (such as learning rate,
number of hidden layers) to prevent overfitting. Model
performance was evaluated using mean absolute
percentage error (MAPE), coefficient of determination
(R²), and Pearson correlation coefficient (r).

3.6. Clinical Data Collection and Validation
To evaluate the potential application value of the 3PNN

framework in real-world scenarios, we retrospectively
collected data from 42 patients who underwent primary THA
at our institution with complete preoperative CT images and
6-month postoperative follow-up records. This study was
approved by our institutional ethics review committee, and all
data were anonymized. For each patient, we manually
measured the five geometric descriptors from preoperative CT
images.

Clinical validation methods:

 Forward model validation: The geometric parameters
of 42 patients were input into the trained Forward-
3PNN model to predict their Gruen zone stress

distributions. Prediction results were compared with
typical stress distribution patterns reported in literature
obtained through FEA or in vitro experiments to assess
clinical consistency.

 Inverse model validation: Among the 42 patients, 28
had dual-energy X-ray absorptiometry (DXA)
measured proximal femoral bone mineral density
(BMD) data. We input these patients' geometric
parameters and predicted stress under standard loading
into the Inverse-3PNN model to inversely infer their
equivalent bone density, and performed correlation
analysis with DXA measured values to validate its
accuracy in assessing bone quality.

4. RESULTS

This section systematically presents the experimental and
computational results of this study, starting from mechanical
characterization of biomimetic bone matrix materials, through
validation of 3D-printed biomimetic bone models, to
performance evaluation of the 3PNN machine learning
framework and clinical data validation results.

4.1. Biomimetic Bone Matrix Material Performance
We successfully developed a biomimetic bone matrix

material with tunable mechanical properties, with elastic
modulus precisely adjustable by controlling internal porosity.
As shown in Figure 1a, material elastic modulus exhibits a
significant exponential decay relationship with porosity. At
10% porosity, material elastic modulus reaches 18.5 ± 1.2 GPa,
approaching human cortical bone mechanical properties;
when porosity increases to 85%, elastic modulus decreases to
0.12 ± 0.03 GPa, comparable to cancellous bone mechanical
properties. The entire tunable range (0.1-20 GPa) completely
covers the mechanical property range of human bone tissue in
healthy and osteoporotic states. This relationship can be well
fitted by a power-law function

E=E0(1−φ)∧α(R2=0.98) (2)

where E₀ is the matrix modulus at zero porosity (20.5 GPa),
φ is porosity, and α is an empirical constant (2.3).

Material compressive properties also show strong
correlation with porosity. Representative stress-strain curves
for samples with different porosities are shown in Figure 1b.
All samples exhibited initial linear elastic stages followed by
plastic deformation or brittle fracture. Low porosity (<30%)
samples showed higher compressive strength and more
pronounced brittle characteristics, while high porosity (>60%)
samples exhibited plastic plateau regions similar to foam
materials. Compressive strength increased from 2.1 ± 0.4 MPa
at 85% porosity to 178 ± 15 MPa at 10% porosity. As shown
in Table 1, we compared key mechanical parameters of
biomimetic bone matrix materials with natural bone tissue
reported in literature, showing that our materials highly match
natural bone in both elastic modulus and compressive strength.
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Figure 1. Mechanical characterization of biomimetic bone matrix material.

4.2. 3D-Printed Biomimetic Bone Model Validation
Using parametric design and multi-material 3D printing

technology, we successfully constructed a biomimetic bone-
implant model library containing 95 different models. To
validate these models' geometric accuracy and mechanical
validity, we conducted a series of assessments. First, printed
models were reverse-measured through μ-CT scanning and
compared with original design values (Figure 2). Results
showed that manufacturing errors for all five key geometric
descriptors were within acceptable ranges: for example, NSA
average error was less than 2°, and CFI average error was less
than 0.1. This confirmed our manufacturing process has high
fidelity and repeatability. The parameter distribution of 95
models (Figure 2b) successfully covered most patient
anatomical variation ranges observed clinically.

Next, we demonstrated through mechanical experiments
that this model library can reproduce biomechanical behavior
diversity caused by geometric differences. Different
geometric morphologies led to distinctly different stress
distribution patterns. For example, models with smaller NSA
(varus hip) and larger CFI (champagne canal) exhibited

significant stress shielding in the proximal medial femur while
showing stress concentration at the prosthesis tip. Conversely,
models with larger NSA (valgus hip) and smaller CFI
(stovepipe canal) had more uniform stress distribution. These
results intuitively demonstrate the decisive influence of
individual geometric differences on postoperative mechanical
environments.

TABLE I. COMPARISON OF MECHANICAL PROPERTIES BETWEEN
BIOMIMETIC BONE MATRIX MATERIAL AND NATURAL BONE TISSUE

Material Type Elastic Modulus (GPa)
Compressive
Strength
(MPa)

Biomimetic bone
matrix (this study) 0.1 - 18.5 2 - 178

Human cancellous
bone 0.1 - 2.0 2 - 12

Human cortical
bone 10 - 20 100 - 200

Sawbones®
synthetic bone

0.16 (cancellous), 7.6
(cortical)

3.1 (cancellous), 133
(cortical)

Figure 2. Geometric features of 3D-printed biomimetic bone model library

To further validate the mechanical validity of our physical
models, we selected 5 representative models and established
corresponding finite element models (FEA). Under identical
boundary conditions and loads, we compared surface stress
measured by DIC on 3D-printed models with FEA-predicted
stress. As shown in Figure 3, the two showed high consistency.
The Pearson correlation coefficient (r) for average stress
values across all 7 Gruen zones reached 0.92 (p < 0.001), with
peak stress location matching exceeding 94%. This indicates
that our 3D-printed biomimetic bone models can serve as
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reliable physical surrogates, accurately simulating complex
mechanical behavior of real bone-implant systems, thereby
providing a high-quality data foundation for subsequent
machine learning model training.

Figure 3. Validation of mechanical behavior between 3D-printed models
and FEA models.

4.2.1. PNN Model Performance
Based on data collected from 95 physical models in 120

experiments, we successfully trained and validated the
bidirectional 3PNN machine learning framework.

Forward-3PNN model performance: This model aims to
predict stress distribution from geometric parameters. In
predictions on the test set (14 models, 18 datasets), Forward-
3PNN demonstrated excellent performance. As shown in
Figure 4a, model predictions for all 7 Gruen zone stresses
highly matched experimental measurements, with overall
coefficient of determination R2=0.89 and mean absolute
percentage error (MAPE)=9.2%. This means the model can
explain 89% of stress distribution variation, with prediction
errors within clinically acceptable ranges. Predictions were
particularly accurate for the mechanically most critical
proximal medial (Gruen 7) and lateral (Gruen 1) femoral
regions, with MAPE of 8.5% and 9.8% respectively. The

loss function curve during training (Figure 4b) shows the
model converged after approximately 150 epochs without
overfitting. This indicates that the Forward-3PNN model can
serve as an efficient surrogate model, completing in seconds
what traditional FEA requires hours to compute, accurately
predicting patient-specific stress distributions.

Figure 4. Forward-3PNN model performance evaluation

Inverse-3PNN model performance: This model aims to
inversely infer bone quality information from mechanical
responses. We first trained the model using model library data
with known material properties, enabling it to learn
relationships between stress distribution and material elastic
modulus (representing bone quality). On the test set, the
model's predicted equivalent bone density correlated with
actual set bone density values at r=0.84, with MAPE=12.5%
(Figure 5a). Subsequently, we validated the model using 28
clinical samples with DXA-measured bone density data. As
shown in Figure 5b, proximal femoral bone density inversely
inferred by the Inverse-3PNN model based on patient
geometric parameters and predicted stress showed strong
correlation with DXA measurements (r = 0.87, p < 0.001).
Additionally, the model demonstrated good performance in
identifying osteoporotic patients (T-score<-2.5), with receiver
operating characteristic (ROC) curve area under the curve
(AUC) reaching 0.91 (Figure 5c), indicating its tremendous
potential as a non-invasive, rapid bone quality assessment tool.
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Figure 5. Inverse-3PNN model performance evaluation

4.3. Parameter Sensitivity Analysis
To explore the influence weights of different geometric

parameters on stress distribution, we conducted global
sensitivity analysis (using Sobol index method) with the
trained Forward-3PNNmodel. As shown in Figure 6, analysis
results clearly revealed the critical roles of various parameters.
Neck-shaft angle (NSA) had the greatest impact on femoral
neck stress (Gruen 2, 6), with total Sobol index reaching 0.42,
consistent with clinical observations that varus hips are prone
to femoral neck fractures. Canal flare index in the most

proximal femur (Gruen 1, 7), with total Sobol index of 0.38.
This explains why patients with "champagne" canals are more
susceptible to proximal bone resorption postoperatively.
Cortical thickness index (CTI), as a direct manifestation of
bone quality, significantly affects stress levels throughout the
femoral shaft, especially in the prosthesis tip region (Gruen 4),
with Sobol index of 0.35. These quantitative analysis results
not only validate the model's mechanical rationality but also
provide profound insights for clinicians to understand
individual differences and for engineers to optimize prosthesis
design.

Figure 6. Parameter sensitivity analysis result

4.4. Clinical Application Cases
To demonstrate the practical application value of the

3PNN framework in clinical decision support, we selected two
representative clinical cases for analysis.

 Case 1: Personalized implant selection. Patient A, male,
68 years old, with geometric characteristics of large
CFI value (5.2), belonging to "champagne" type canal.
We used the Forward-3PNN model to test
postoperative stress distributions for "standard stem"
and "short stem" implant options (Figure 7a). Results

showed that using a standard stem would cause severe
stress shielding in the most proximal femur (Gruen 1,
7), with stress levels below normal physiological
stimulation threshold (<5 MPa), indicating extremely
high long-term bone resorption risk. However,
switching to a short stem prosthesis, due to its more
proximal fixation position, significantly improved
stress distribution, elevating proximal stress levels to
12 MPa, closer to physiological states. Based on this
prediction result, clinicians can more confidently
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recommend the short stem prosthesis option for this
patient.

 Case 2: High-risk patient identification. Patient B,
female, 72 years old, with low CTI value (0.32). The
Inverse-3PNN model predicted her equivalent bone
density was low, indicating osteoporosis risk. The
Forward-3PNN model further predicted that under
standard loading, peak stress in her lateral femoral
cortex (Gruen 3) and prosthesis tip (Gruen 4) would
reach 78 MPa, approaching the fatigue limit of elderly
osteoporotic bone (Figure 7b). This information

indicates this patient belongs to the high-risk
population for periprosthetic fractures. Based on this,
clinicians can recommend preoperative osteoporosis
treatment to strengthen bone, or select prostheses with
gentler stress distribution during surgery (such as
coated stems or flexible material prostheses), and
develop more cautious postoperative rehabilitation
plans. These cases fully demonstrate that the 3PNN
framework can translate complex biomechanical
analysis into intuitive, actionable clinical decision
support information.

Figure 7. Clinical application cases of 3PNN framework

5. DISCUSSION

This study successfully combined 3D-printed biomimetic
models with machine learning to create a novel 3PNN co-
modeling framework and demonstrated its tremendous
potential in personalized biomechanical design for hip
arthroplasty. Our research results not only technically
achieved rapid mapping from patient imaging to mechanical
prediction but, more importantly, provided a new paradigm
for understanding and solving core biomechanical problems
in personalized medicine. This section will provide in-depth
interpretation of core findings, compare them with existing
methods, explore clinical translational value and design
insights, and objectively analyze limitations and future
development directions.

5.1. Core Findings Interpretation
The most core contribution of this study lies in

constructing and validating the 3PNN framework itself. The
Forward-3PNN model can predict post-implantation stress
distribution within seconds with less than 10% error, making
it fully capable of becoming a routine tool for clinical
preoperative planning. It overcomes the bottleneck of
traditional FEA’s excessive time consumption, making rapid
"virtual experiments" on multiple prosthesis options possible.
More importantly, this model is not a pure "black box." Since
its training data comes from a physics-law-following,
validated biomimetic bone model library, its predictions
inherently embody biomechanical mechanisms. Parameter
sensitivity analysis results clearly revealed how key geometric
parameters like NSA and CFI influence stress distribution,
highly consistent with decades of clinical observations and
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biomechanical research results, thereby greatly enhancing
model credibility and interpretability.

The success of the Inverse-3PNN model opened an
entirely new direction: inversely inferring biological
properties from mechanical responses. Bone quality is a key
factor determining surgical plans and predicting postoperative
risks, but its precise, non-invasive measurement has always
been challenging. DXA provides two-dimensional projection
density, easily affected by artifacts; QCT can provide three-
dimensional volumetric density but has higher radiation doses
and is not widely available. Our Inverse-3PNN model can
inversely infer equivalent bone density with relatively high
accuracy (r=0.87 vs DXA) based solely on patient geometric
morphology and (virtual or real) mechanical responses. This
is essentially a functional bone quality assessment because it
evaluates bone mechanical functional performance rather than
just material density. This provides a theoretical foundation
for developing new, low-cost, radiation-free bone quality
assessment tools.

5.2. Comparison with Existing Methods
Compared with traditional finite element analysis (FEA),

the greatest advantage of the 3PNN framework lies in its
unparalleled computational efficiency. A complete patient-
specific FEA modeling and analysis typically requires hours
or even days, while 3PNN prediction is nearly instantaneous.
This order-of-magnitude difference in efficiency is key to its
clinical application potential. Of course, in terms of accuracy,
finely tuned FEA models may be slightly higher than our
surrogate model (MAPE ~5% vs 9%). However, considering
that FEA results themselves are affected by many uncertainty
factors such as mesh quality, material assignment, and
boundary conditions, 3PNN achieves tremendous efficiency
leaps while ensuring clinically acceptable accuracy—a typical
"cost-effectiveness" optimization. The two are not mutually
exclusive; FEA remains an indispensable "gold standard" tool
for in-depth mechanistic research and establishing physical
model libraries, while 3PNN is a "shortcut" for "distilling" its
knowledge and rapidly applying it clinically.

Compared with pure data-driven machine learning
methods, the advantage of the 3PNN framework lies in its
physical fidelity and data efficiency. Pure ML models
typically require massive clinical data (such as thousands or
even tens of thousands of patients' images and postoperative
outcomes) to learn reliable patterns, but such high-quality,
fully annotated medical datasets are extremely scarce. Our
framework cleverly bypasses dependence on large-scale
clinical data by constructing a physical model library to
colloct" training data. This not only solves the data scarcity
problem but also ensures training data diversity and coverage.
More importantly, since model training is based on physical
experiments, its internal logic follows biomechanical laws,
avoiding the risk of pure ML models learning spurious
correlations, giving it better generalization capability and
robustness when facing new samples outside the training set.

Compared with traditional in vitro experimental models,
our 3D-printed biomimetic bone model library has significant
advantages. Cadaveric bone sample biomechanical properties
cannot be adjusted on demand, and inter-individual variability
is enormous, making controlled parametric studies difficult.
Commercial synthetic bones, while batch-stable, have
uniform materials unable to simulate bone tissue
heterogeneity and inter-patient geometric and material

differences. Our method combines parametric design and
multi-material 3D printing, enabling on-demand
manufacturing of models with specific geometric features and
mechanical properties. This allows us to systematically and
decoupled study each parameter's influence on final
mechanical outcomes, which traditional experimental
methods cannot achieve. We have created not a single model
but a computable, designable, manufacturable “model
platform”.

5.3. Clinical Translational Value and Design Insights
The clinical translational value of the 3PNN framework is

multifaceted. First, it can serve as the core engine for
preoperative planning software. Clinicians need only upload
patient CT images, and the system can automatically extract
geometric parameters and provide stress distribution
prediction cloud maps, bone resorption risk scores, and
fracture risk warnings for multiple prosthesis options
(different types, sizes, placement positions) within minutes.
This visualized, quantitative decision support will greatly
enhance the scientific basis of physician decisions and
facilitate doctor-patient communication.

Second, the framework can be used for precise
management of high-risk patients. By assessing patient bone
quality through Inverse-3PNN and combining Forward-3PNN
stress predictions, osteoporotic patients with abnormal bone
morphology and other high-risk patients can be identified
preoperatively. For these patients, personalized intervention
strategies can be developed, such as recommending cemented
prostheses, suggesting preoperative bone strengthening
treatment, or planning more conservative rehabilitation
protocols, thereby achieving a shift from "passive response to
complications" to "active risk prevention."

More profoundly, the framework provides a powerful tool
for implant design innovation. Traditional implant design
relies on experience and a few standard sizes. Using the 3PNN
framework, implant manufacturers can conduct virtual testing
and design optimization for different population subgroups
(such as Asian females, North American males) or specific
pathological states (such as acetabular dysplasia), developing
more adaptive product lines. One can even envision achieving
complete "on-demand design" in the future, customizing
unique, mechanically optimal implants for each patient.

From a design discipline perspective, this study embodies
the core concept of modern design thinking shifting from
"product-centered" to "user (patient)-centered." We treat
patient individual differences (geometric morphology, bone
quality) as core design variables rather than interference
factors to be overcome. The entire 3PNN framework
construction process is one of deeply understanding user
needs (patient biomechanical characteristics) and optimizing
products (implants) and services (preoperative planning)
accordingly. This design thinking transformation has
important implications for the medical device industry and
even the entire manufacturing sector.We have constructed not
just a prediction tool but a collaborative innovation platform
connecting doctors, patients, engineers, and manufacturers—
a preliminary medical "digital twin" system.

5.4. Research Limitations
Despite achieving positive results, this study still has some

limitations requiring improvement in future work.
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First, limitations from model simplification. To improve
computational and experimental efficiency, our physical
models underwent some simplifications. For example, we
only considered static loading during single-leg stancewithout
testing complex loading situations during dynamic activity
cycles like walking or stair climbing. Our biomimetic bone
material is isotropic, while real bone tissue has complex
anisotropic mechanical characteristics. Additionally, models
did not include soft tissues like muscles and ligaments, which
also contribute to joint stability and load transfer. While these
simplifications are necessary and reasonable at the current
stage, they may affect absolute accuracy of prediction results.

Second, material and manufacturing limitations. Although
our biomimetic bone matrix matches natural bone well in
elastic modulus, it does not fully resemble bone viscoelasticity,
fatigue characteristics, or bone remodeling biological
behaviors. Additionally, 3D printing processes themselves
have certain precision limitations, especially in reproducing
micron-scale trabecular structures.

Third, clinical validation limitations. Clinical validation in
this study was based on retrospective data with relatively
limited sample size (n=42) and short follow-up time (6
months). Although results showed good correlation and
consistency, ultimately proving the framework can improve
long-term clinical outcomes (such as reducing revision rates)
requires large-scale, prospective randomized controlled
clinical trials.

5.5. Future Research Directions
Addressing the above limitations, future research can

proceed in the following directions. First is model refinement
and expansion. Future research should strive to develop
biomimetic materials capable of simulating bone anisotropic
mechanical properties and introduce dynamic loading and soft
tissue constraints into physical models to further improve
prediction biofidelity. Simultaneously, bone remodeling
algorithms can be coupled with the 3PNN framework to
predict long-term bone density changes years after implant
placement. Second is application domain expansion. The
3PNN methodology has strong universality and can be
conveniently transferred to other orthopedic implant designs,
such as knee arthroplasty, spinal fixation, and trauma plates.
Third is accelerating clinical translation. The next key task is
developing user-friendly preoperative planning software and
integrating it into hospitals' existing picture archiving and
communication systems (PACS). Simultaneously,
prospective clinical research should be initiated to validate this
technology's effectiveness and safety in real clinical
environments. Ultimately, we envision combining this
framework with surgical navigation and robotic technology to
achieve closed-loop integration from personalized design to
precision surgical implementation, truly constructing a
medical digital twin system serving patients' entire lifecycles.

6. CONCLUSION

This study proposed and validated an innovative “3D
Printing-Neural Network Co-modelling” (3PNN) framework
aimed at solving core challenges in personalized
biomechanical design for total hip arthroplasty. By combining
a parametrically designed 3D-printed biomimetic bone model
library with a bidirectional machine learning model, we
successfully created a surrogate model capable of rapidly and
accurately predicting patient-specific stress distributions and
assessing bone quality. Research results indicate that this

framework not only matches traditional FEA methods in
prediction accuracy but also improves computational
efficiency by several orders of magnitude. More importantly,
it overcomes pure data-driven methods' dependence on large-
scale clinical data and "black box" problems, achieving unity
of physical fidelity and predictive efficiency. This study
provides powerful tools for achieving truly personalized
medical device design and preoperative planning, opening
new technical pathways for constructing medical digital twin
systems.
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