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Abstract—Sleep disturbances are common among older
adults and contribute to declines in health, cognition, and
overall well-being. To address the limitations of passive,
monitoring-centered digital sleep solutions, this study proposes
a design-driven smart wearable system that integrates
multimodal physiological sensing, adaptive personalization, and
non-pharmacological behavioral and sensory-based
interventions. A randomized crossover trial involving 40 older
adults demonstrated that activation of the personalized
intervention module — including sound-based relaxation
guidance, light-based circadian support, and vibration-assisted
behavioral cues — led to significant improvements in both
subjective and objective sleep outcomes. Participants
experienced a mean reduction of 2.2 points in Pittsburgh Sleep
Quality Index (PSQI) scores, alongside improvements in sleep
efficiency, wake after sleep onset, and sleep fragmentation. A
subsample undergoing home-based polysomnography (PSG)
showed moderate to strong correlations between wearable-
derived and PSG-derived sleep parameters (r = 0.68-0.79),
supporting the physiological validity of the system. High
adherence and usability ratings further indicated that design-
driven personalization effectively enhanced engagement, a key
barrier in conventional wearable-based sleep interventions.
These findings suggest that adaptive, non-pharmacological
wearable interventions can provide a scalable and accessible
approach to precision sleep health management in aging
populations.
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1. INTRODUCTION

Worldwide population aging has intensified scientific and
public health interest in sleep health among older adults.
Large-scale meta-analytic evidence indicates that sleep
disturbances are highly prevalent in this population: a pooled
analysis of nearly one million individuals aged 60 years or
older across 36 countries reported that approximately 40%
experience poor sleep quality and 29% report clinically
significant insomnia symptoms, while more than one-third
exhibit elevated risk of obstructive sleep apnea [1].
Complementary population-based surveys further suggest
that 30-50% of community-dwelling older adults routinely
obtain fewer than seven hours of sleep per night and

frequently report insomnia, daytime fatigue, and impaired
daytime functioning [2][3][4].

Poor sleep in later life is not merely a quality-of-life
concern but a fundamental biological and behavioral risk
factor for adverse health trajectories. Robust longitudinal
evidence has linked chronic sleep disturbance to accelerated
cognitive decline, increased incidence of cardiovascular and
metabolic disease, mood disorders, and progressive loss of
functional independence [5][6][7][8]. Despite this well-
established burden, the biological and behavioral mechanisms
through which aging-related changes disrupt sleep
architecture remain incompletely understood, constraining
the development of targeted, scalable, and sustainable
interventions.

Current clinical strategies for managing sleep
disturbances in older adults remain suboptimal.
Pharmacological treatments are associated with tolerance,
dependency risks, residual daytime sedation, and elevated fall
risk[9][10], while in-laboratory behavioral sleep therapies are
resource-intensive and difficult to implement at scale in real-
world community settings. The rapid proliferation of
consumer-grade wearable and home-based sleep monitoring
technologies has therefore generated considerable interest as
a potential pathway toward scalable, non-invasive sleep
health management. Multicenter validation studies comparing
wearable, nearable, and ambient sleep-tracking systems with
gold-standard polysomnography (PSG) have demonstrated
that certain commercially available wearables, such as Fitbit
Sense 2 and Pixel Watch, can achieve moderate agreement
with PSG for selected sleep parameters, including deep sleep
estimation, albeit with substantial inter-device and inter-
individual variability.[11][12][13]

However,  meta-analytic evidence  consistently
demonstrates that current consumer wrist-worn devices
systematically mis-estimate core sleep parameters, including
total sleep time (mean bias-16.9 min), sleep efficiency (mean
bias-4.7%), and wake after sleep onset (mean bias+13.3 min),
relative to PSG[14]. These performance limitations are
particularly pronounced in older adults, whose sleep is
frequently more fragmented and whose age-related
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physiological changes and comorbidities may degrade the
signal quality of wearable sensors and algorithmic inference.

Importantly, the limitations of existing wearable sleep
technologies are not purely technical. Beyond issues of
measurement accuracy, current systems are predominantly
designed as passive monitoring tools and lack adaptive,
closed-loop intervention mechanisms. They typically provide
retrospective summaries of sleep metrics without delivering
real-time, context-aware, and personalized support.
Consequently, although such devices may enhance awareness
and self-monitoring, they rarely translate into sustained,
clinically meaningful improvements in sleep
outcomes[15][16]. One-size-fits-all sleep hygiene guidance is
often insufficient for older adults, given substantial
heterogeneity in circadian rhythms, environmental exposures,
lifestyle patterns, and responsiveness to behavioral change
strategies. Moreover, there remains a critical gap in the
literature regarding the integration of age-friendly, user-
centered design, real-time multimodal physiological sensing,
and adaptive feedback systems into cohesive digital sleep
interventions for older adults.

Recent advances in machine learning and wearable system
design have begun to address aspects of these challenges.
Notably, a wireless multimodal wearable system operating
without electroencephalography (EEG) has been shown to
achieve balanced classification accuracy of 83.5% for
wake/sleep/REM staging, with a Cohen’s x of 0.73, when
validated against PSG in clinical populations. These findings
suggest that, with appropriate sensor fusion strategies and
algorithmic optimization, non-invasive wearable platforms
may approximate key physiological aspects of sleep with
sufficient fidelity to support scalable, real-world interventions
outside of laboratory environments.[17][ 18]

Building on these developments, the present study
proposes a design-driven smart wearable system specifically
tailored for older adults that integrates multimodal
physiological sensing, age-centered human—computer
interaction principles, and an adaptive, machine learning—
driven intervention engine capable of delivering real-time,
personalized sleep support[19]. We hypothesized that
activating  adaptive and personalized design-driven
interventions would lead to significantly greater
improvements in subjective sleep quality, as assessed by the
Pittsburgh Sleep Quality Index (PSQI), compared with
passive monitoring alone.

To test this hypothesis, we employed a randomized
crossover trial conducted under free-living conditions. A
subsample of participants additionally underwent home-based
polysomnography (PSG) to validate the physiological
relevance of wearable-derived sleep metrics and to ensure that
observed subjective improvements corresponded to
objectively meaningful changes in sleep architecture.

This work makes three primary contributions. First, it
conceptualizes design-driven intervention as an active
therapeutic component in digital sleep health, rather than a
peripheral usability feature. Second, it provides causal
evidence that adaptive, personalized wearable-based
interventions can yield clinically meaningful improvements in
sleep quality in older adults. Third, it establishes the
physiological validity of multimodal wearable sleep metrics
through direct comparison with PSG, addressing a major
limitation in prior wearable-based sleep research.
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2. RELATED WORK

2.1.  Sleep health in older adults and non-
Ppharmacological interventions

Sleep disturbances are highly prevalent among older
adults and are consistently linked to adverse cognitive,
cardiovascular, metabolic, and functional outcomes. Recent
scoping and systematic reviews focused on aging populations
demonstrate that insomnia symptoms, sleep fragmentation,
and impaired subjective sleep quality affect a substantial
proportion of community-dwelling older adults, and that non-
pharmacological approaches — including cognitive
behavioral therapy for insomnia (CBT-I), structured sleep
hygiene education, and digitally delivered behavioral
programs — can yield clinically meaningful improvements in
self-reported sleep outcomes.[20]

However, despite the rapid expansion of mobile health
technologies, rigorously designed trials that specifically
evaluate home-based, sensor-driven, and adaptive digital
interventions in older populations remain scarce. Moreover,
objective sleep improvements measured via actigraphy or
polysomnography (PSG) remain inconsistent across studies,
raising ongoing concerns about ecological validity and
mechanistic interpretability. Collectively, these reviews
highlight both the scalability potential of digital sleep care and
the unresolved methodological challenges that continue to
limit confident translation into real-world geriatric contexts.

2.2.  Accuracy and limitations of consumer and research
wearables for sleep measurement

Wrist-worn and near-body sleep tracking devices have
enabled unprecedented large-scale, longitudinal assessment
of sleep outside the laboratory. Nevertheless, validation
studies and recent scoping reviews consistently document
persistent technical and methodological limitations. While
accelerometer-based devices typically achieve acceptable
sleep—wake discrimination, multi-sensor systems that
integrate photoplethysmography (PPG) and additional
physiological signals demonstrate superior, yet still imperfect,
performance in sleep stage classification.[11]

Large multicenter comparative studies of consumer-grade
wearables, nearables, and ambient sensors report that some
contemporary devices approach PSG-level performance for
selected summary metrics (e.g., total sleep time), while
simultaneously exhibiting systematic biases in wake after
sleep onset (WASO), sleep efficiency, and deep-sleep
estimation. [14] Substantial inter-device variability and
population-specific  performance degradation further
undermine generalizability. Authoritative methodological
reviews therefore emphasize the necessity of standardized
validation protocols, transparent algorithmic reporting, and
equity-aware testing frameworks. These findings underscore
a fundamental trade-off between scalability and physiological
fidelity and motivate hybrid validation strategies, such as
embedded PSG substudies, when wearable-derived metrics
are used to inform or trigger clinical-grade interventions.

2.3.  Personalized digital sleep interventions and
algorithmic adaptivity

Digital behavioral interventions for sleep have evolved
from static, app-based cognitive behavioral therapy programs
to hybrid systems integrating wearable-derived physiological
data. Meta-analytic evidence indicates moderate benefits of
digital CBT-I for subjective sleep outcomes; however, a
dominant limitation across existing systems is their reliance
on static, rule-based personalization logic that fails to account
for dynamic, within-person variability.[21][22]
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Reinforcement learning (RL) and related sequential
decision-making frameworks have emerged as theoretically
principled approaches for continuous personalization in
health interventions by optimizing policies over longitudinal,
context-rich data streams. [23][24] Methodological reviews
identify RL as particularly well suited for optimizing
intervention timing, modality selection, and dosage, while
simultaneously highlighting unresolved challenges in safety
constraints, reward function specification, off-policy
evaluation, and interpretability. To date, empirical
applications of RL in sleep and nocturnal behavior regulation
remain limited and largely exploratory, leaving significant
opportunity for carefully controlled translational studies that
bridge theoretical promise with physiologically grounded
deployment.

2.4.  User-centered design, usability, and older-adult
considerations for wearables

Beyond algorithmic performance, real-world
effectiveness of wearable sleep interventions is fundamentally
constrained by user acceptance, sustained engagement, and
physical tolerability, particularly among older adults.
Empirical usability studies and qualitative syntheses indicate
that factors such as device comfort, aesthetic acceptability,
perceived utility, interaction simplicity, and congruence with
daily routines strongly shape adherence trajectories.[15]

Age-sensitive  interface  characteristics—including
simplified navigation, enlarged typography, consistent
iconography, and low-burden multimodal feedback—have
been shown to significantly influence long-term usability.
Reviews within gerontechnology and digital health literatures
consistently  advocate  participatory and  co-design
methodologies to ensure accessibility, reduce stigma, and
enhance ecological validity. These insights underscore that
technical performance alone is insufficient and that human-
centered design must be integrated as a first-order
methodological principle in the development of wearable
sleep intervention systems for older adults.

2.5.  Algorithm validation, external generalization, and
open science practices

Recent methodological scholarship in wearable-based
sleep analytics emphasizes the critical importance of
reproducible processing pipelines, subject-wise data
partitioning to prevent information leakage, and robust
external  validation through independent datasets.
Recommended reporting standards increasingly call for
comprehensive performance metrics, including accuracy, F1-
score, Cohen’s K, Bland—Altman bias and limits of agreement,
as well as stratified analyses by age, skin tone, and
comorbidity profiles.[14][17]
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Leading reviews further advocate open sharing of model
architectures, training protocols, and code repositories to
accelerate cumulative scientific progress. In intervention-
oriented studies, where wearable-derived signals directly
inform adaptive system behavior, embedding gold-standard
validation substudies—such as home-based PSG or validated
actigraphy—is now widely considered best practice to
demonstrate that algorithmic triggers correspond to
physiologically meaningful events rather than sensor noise or
model artifacts.

2.6. Research Gaps and Innovations of This Study

Despite rapid advances in wearable sensing technologies,
machine learning—based sleep analytics, and human-centered
design, current approaches to sleep health in older adults
remain largely fragmented, reactive, and insufficiently
personalized. [14][16] Existing systems predominantly focus
on passive monitoring and static feedback, with limited
capacity to integrate physiological, behavioral, and contextual
signals into adaptive, real-time interventions that are both
clinically meaningful and usable by aging populations.

This study introduces a fundamentally new paradigm for
sleep health management in older adults by integrating
design-driven system architecture, multimodal physiological
sensing, and adaptive machine intelligence into a closed-loop,
personalized intervention framework. The proposed system
continuously fuses photoplethysmographic and motion-
derived biosignals with longitudinal behavioral data to
dynamically predict sleep disturbances and deliver real-time,
context-aware interventions. By embedding age-centered
design principles as core system constraints and validating the
framework through a rigorously designed randomized
controlled trial and home-based polysomnography
benchmarking, this work provides the first comprehensive
evidence that scalable, intelligent, and genuinely
individualized sleep intervention systems can achieve
clinically meaningful improvements in sleep quality,
establishing a direct translational pathway from design
innovation to measurable health outcomes in aging
populations.

3. METHODS

The core of this study is the design-driven smart wearable
system, which integrates multimodal sensing, adaptive
personalization, and non-pharmacological interventions into a
closed-loop framework. Figure 1 illustrates the overall
architecture and the interaction between its key components,
which is central to the methodology described below.
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Figure 1. The Overall Architecture

3.1.  Study Design and Participants

This study adopted a randomized, two-period crossover
experimental design to evaluate the performance of a design-
driven smart wearable system for sleep quality enhancement
in community-dwelling older adults. The crossover design
was selected to maximize statistical efficiency and minimize
inter-subject variability by allowing each participant to serve
as their own control.

Each participant completed two 4-week intervention
periods, separated by a 1-week washout intended to minimize
potential carry-over effects. During the IC period, participants
used the full closed-loop adaptive system with real-time
personalized adjustments. During the CC period, they used the
same wearable device and app but without adaptive feedback
or real-time optimization.

Participants were instructed to maintain their usual
bedtime habits during both periods. Daily adherence and
device wear time were monitored automatically through the
system backend. Participants were randomly assigned in a 1:1
ratio to one of two sequences (IC—CC or CC—IC) . The
randomization sequence was generated using a computer-
based block randomization procedure (block size = 4) by an

Big.D | (2025)2:4

investigator not involved in data collection. Allocation
concealment was ensured by placing assignment slips in
sealed, opaque envelopes opened only after baseline
assessment. Because of the nature of the intervention,
participants could not be blinded to the condition. However,
data analysts and outcome assessors were blinded to the
condition labels until all analyses were completed. Files were
coded using anonymized identifiers to minimize bias.

3.1.1. Participant recruitment and eligibility

Participants were recruited via community advertisements
and health-center outreach programs. Inclusion criteria
included:

e Age >60 years;

e Self-reported sleep complaints or poor sleep quality
(e.g., PSQI > 5);

e Ability to comply with wearable device use and
complete daily app-based questionnaires.

Exclusion criteria included:

e Diagnosed moderate-to-severe sleep disorders
requiring medical treatment (e.g., severe sleep apnea,
REM behavior disorder);
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e Major psychiatric illness or cognitive impairment
limiting protocol adherence;

o Shift-work schedules;

e Use of medications that substantially alter sleep
architecture unless dosage was stable for >3 months.

The study protocol was approved by the Institutional
Review Board and adhered to the Declaration of Helsinki.

3.2.  Intervention and Control Conditions

During the Intervention Condition (IC), the wearable
system operated in full closed-loop mode, integrating
multimodal physiological sensing with real-time adaptive
interventions. The system continuously monitored heart rate,
heart rate variability (HRV), electrodermal activity (EDA),
body motion, ambient light, and environmental noise.
Embedded real-time algorithms performed online detection of
sleep-stage transitions and micro-arousals, triggering low-
intensity interventions (warm light modulation, pink-noise
stimulation, or vibrotactile cues) to stabilize sleep continuity.
Intervention parameters were dynamically personalized based
on longitudinal user-response profiles.

In the Control Condition (CC), all sensing modules
remained active, but adaptive intervention functions were
disabled. Participants received descriptive sleep summaries
only, without behavioral prompts or environmental
modulation. Device appearance, interaction procedures, and
user interfaces were identical between IC and CC to minimize
expectancy effects.

3.3.  Wearable System and Algorithm Framework

The intelligent sleep enhancement system used in this
study consists of a multimodal physiological sensing wearable,
a cloud-assisted mobile application, and an adaptive
personalization algorithm capable of optimizing sleep-related
interventions. The system architecture follows a layered
framework comprising (1) signal acquisition and sensing
hardware, (2) preprocessing and feature extraction, (3)
automated sleep-state inference, and (4) a reinforcement
learning—based personalization engine.

3.3.1. Signal Acquisition Hardware

The wearable device is equipped with a multimodal sensor
suite designed to capture physiological signals relevant to
sleep staging and behavioral monitoring. The primary sensing
components include:

e Photoplethysmography (PPG) sensor for heart-rate
and heart-rate variability (HRV) estimation

e Triaxial accelerometer (ACC) for activity, posture, and
movement detection

e Skin temperature sensor (optional) for circadian phase
and peripheral thermoregulation assessment

e Ambient light sensor for tracking environmental light
exposure

Signals are sampled at 25-100 Hz depending on channel
requirements (PPG typically at 50-100 Hz; ACC at 25-50 Hz).
The device employs a low-power microcontroller (e.g., ARM
Cortex-M4F class) with on-board memory buffering and
energy-efficient ~ Bluetooth  Low  Energy  (BLE)
communication.

Big.D | (2025)2:4

Data are transmitted at configurable intervals (1-5 minutes)
to the mobile application, which relays selected features and
raw segments to the cloud server for further processing.
Battery life is typically 57 days under normal operation.

3.3.2. Signal Preprocessing and Feature Extraction
Raw signals are first subjected to preprocessing
procedures including:

e Band-pass filtering of PPG to suppress motion artifacts

e Adaptive noise cancellation during periods of high
movement

e Vector magnitude calculation and orientation

normalization for ACC

e Sliding-window segmentation (usually 30-second
epochs aligned with sleep scoring conventions)

e Within each window, the system extracts a feature set
comprising:

e Cardiovascular features: HR, HRV metrics (RMSSD,
SDNN), pulse amplitude variability

e Movement features: activity counts, motion intensity,
roll/tilt changes

¢ Physiological context features: skin temperature trends,
light exposure levels

e Sleep dynamics features: transitions,

circadian phase cues

temporal

These features are standardized and fed into the sleep
inference model.

3.3.3. Automated Sleep-State Inference

Sleep stages are inferred using a data-driven model trained
on a combination of publicly available and internally collected
datasets with synchronized PSG labels. The model integrates
short-term temporal dependencies and sensor multimodality.

The architecture consists of:

a) A convolutional feature extractor (1D-CNN) to
learn morphological and spectral properties of PPG and
accelerometer-derived signals;

b) A bidirectional recurrent layer (BiLSTM) or a
lightweight Transformer encoder to capture temporal
sequences across adjacent epochs;

¢) A softmax output layer to classify each 30-second
epoch into one of the following states:

e Wake

e Lightsleep (N1 + N2)
e Deep sleep (N3)

e REM sleep

Model training uses cross-entropy loss with class-
balancing weights. Validation follows a subject-wise split to
avoid data leakage. During real-time operation, the model runs
on the mobile app using an optimized on-device inference
engine, with full cloud inference reserved for periodic re-
evaluation.

3.3.4. Reinforcement
Engine

Learning—Based Personalization
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To adapt sleep interventions to individual needs, the
system incorporates a reinforcement learning (RL) framework
that personalizes feedback and behavioral prompts based on
night-to-night processing.

a) State Space
The state St includes:

e Recent sleep metrics (TST, SE, WASO, fragmentation
index)

o Stage-transition patterns

¢ Evening routines (bedtime variability, pre-sleep phone
use, light exposure)

e Physiological indicators (HRV patterns suggesting
stress or arousal)

e Historical
interventions

response  sensitivity to  previous

b) Action Space

The RL agent selects from a predefined set of adaptive
sleep-improvement actions, such as:

e Optimized bedtime recommendations
e Pre-sleep wind-down prompts
¢ Adjustments to environmental lighting cues

e Micro-intervention suggestions (relaxation reminders,
breathing pacing)

e Recommendations regarding daily routines (daytime
light exposure, activity consistency)

e Actions are delivered through the mobile app in the
form of personalized behavioral guidance.

¢) Reward Function

e The reward Rt is computed primarily based on:

e Nightly improvement in SE and WASO

e Reduction in awakening frequency

e Improvement in subjective morning-restedness scores
o Stability of circadian-related behavioral trends

A weighted composite reward is used to balance short-
term gains and long-term adaptation.

d) Learning Algorithm

The agent employs a contextual multi-armed bandit
algorithm with periodic policy refinement. Offline training is
performed on historical data, while online learning adjusts
intervention probabilities according to individual response
patterns. Safety constraints prevent excessive or unsuitable
intervention prompts, ensuring user comfort and long-term
adherence.

3.3.5. System Integration and Closed-Loop Workflow
The complete closed-loop workflow operates as follows:

e Nighttime sensing: Wearable collects physiological
and behavioral signals.

e Automated sleep scoring: The inference model labels
sleep states epoch-by-epoch.
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e Outcome extraction: Objective metrics (TST, SE,
WASO, fragmentation) are computed.

e Policy update: RL engine updates internal parameters
based on nightly performance.

e Personalized feedback: The system delivers

individualized guidance before or after sleep,
depending on learned response patterns.
This  architecture  enables continuous, adaptive

optimization of sleep-related behaviors over the intervention
period.

3.4.  Primary and Secondary Outcomes

3.4.1. Primary Outcome

The primary outcome was the within-subject change in
sleep quality, operationalized as the difference in Pittsburgh
Sleep Quality Index (PSQI) total scores between the
intelligent closed-loop condition (IC) and the control
condition (CC) at the end of each 4-week intervention period.

The PSQI is a widely validated instrument assessing seven
components of sleep quality over the preceding month. Total
scores range from 0 to 21, with higher scores indicating poorer
sleep quality. Based on established literature, a 2.5-3 point
reduction in PSQI is considered a minimal clinically important
difference (MCID) for individuals with poor sleep. This
threshold was adopted for interpreting clinical relevance in the
present study.

Participants completed the PSQI during baseline
assessment and at the end of each study period. The primary
treatment effect was estimated using the linear mixed-effects
model described in Section 3.6.

3.4.2. Secondary Outcomes

Secondary outcomes focused on objective sleep
parameters derived from the wearable-based automated sleep
scoring system, as well as subjective assessments.

a) Objective wearable-derived outcomes

e Objective nightly sleep metrics were computed from
the 30-second sleep-stage output of the inference
model:

e Total Sleep Time (TST): Number of minutes scored as
any non-wake stage.

« Sleep Efficiency (SE): SE=———

inBed 100% (1)
e Wake After Sleep Onset (WASO): Total minutes
scored as wake after the first epoch of sleep.

e Sleep Fragmentation Index: Composite metric
incorporating frequency of stage transitions and short
wake episodes, normalized per hour of sleep.

e REM and Deep Sleep Percentages: Proportion of total
sleep time spent in REM and N3 stages.

e Heart-Rate Variability (HRV) Indicators: RMSSD and
SDNN computed from artifact-corrected PPG signals.

Daily sleep metrics were averaged across each 4-week
period before being entered into mixed-effects analyses.
Outlier nights (<3 hours wear or >15% missing signal) were
excluded following pre-established quality-control rules.

b) Subjective outcomes
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Participants provided daily morning self-reports through
the mobile app, including:

e Perceived sleep quality (0—10 scale)

e Morning-restedness (0—10 scale)

e Ease of falling asleep

e Number of perceived nocturnal awakenings

Weekly questionnaires assessed mood, stress, and

adherence to recommended sleep routines.

These subjective outcomes served as secondary endpoints
to complement objective physiological measures.

¢) Exploratory Outcomes
Exploratory analyses examined:

e Variability in bedtime regularity
e Daytime activity and light exposure patterns

e Behavioral personalized

interventions

responsiveness  to

e Interactions between baseline characteristics (age,
chronicity of sleep problems) and treatment effects

Although not powered as primary analyses, these outputs
provide insight into mechanisms through which the adaptive
system influences sleep behavior.

3.5.  Polysomnography (PSG) Validation

To evaluate the accuracy of the wearable-based automated
sleep-state inference system, a PSG validation substudy was
conducted among a subset of participants. Overnight
recordings were acquired using a standard AASM-compliant
polysomnography (PSG) system, including EEG, EOG, EMG,
airflow, thoracic/abdominal effort, and pulse oximetry
channels.

3.5.1. Data acquisition and synchronization

Participants wore the study device concurrently during
PSG testing. Time synchronization between PSG and
wearable data streams was achieved through:

e Pre-sleep timestamp alignment at device initialization,

e Matching system clock metadata from the PSG
machine and wearable app server,

e Post-hoc alignment based on identifiable movement
artifacts shared across modalities.

Epoch-by-epoch alignment was performed at 30-second
resolution, consistent with AASM scoring guidelines. Nights
with major synchronization drift (>2 minutes misalignment)
or poor wearable signal quality (>15% missing PPG) were
excluded from validation analysis.

3.5.2. Sleep staging comparison metrics

Wearable-derived sleep stages (Wake, Light, Deep, REM)
were compared to PSG-scored labels annotated by two
independent registered PSG technicians (with adjudication to
resolve discrepancies). Several performance metrics were
computed:

The PSG substudy was designed to assess:
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a) Epoch-by-epoch accuracy (overall):
2

Number of matching epochs

Accuracy=
Y Total epochs

b) Cohen’s k: Agreement beyond chance, interpreted

following Landis—Koch criteria.

¢) Per-stage performance:
e Sensitivity
e Specificity
e Positive predictive value (PPV)
e Fl-score

These metrics quantify detection accuracy for each
specific sleep stage.

3.5.3. Validation of continuous sleep summary metrics
To evaluate agreement in continuous sleep metrics derived
from wearable vs PSG, the following indices were assessed:

e Total Sleep Time (TST)

e Sleep Efficiency (SE)

e Wake After Sleep Onset (WASO)

e Sleep Fragmentation Index

For each metric, agreement was evaluated using:

o Intraclass correlation coefficient (ICC)

(ICC(3,1)) was

A two-way mixed-effects model

2
used: [CC=——tetwean__ - (3)

62betwee11+<525rror
¢ Bland—Altman analysis

The mean bias and 95% limits of agreement were
computed as: Bias=D, LoA=D+1.96xSDp, (4)

where D is the difference between wearable and PSG
metrics.

e Pearson correlation coefficients

Used to describe linear association but not as a measure of
agreement alone.

3.5.4. Quality control and artifact handling
Wearable signals were screened using automated quality-
control algorithms that detect:

e PPG motion artifacts

e Low perfusion segments

e Accelerometer saturation

e Missing or corrupted data packets

Epochs failing QC were either repaired using interpolation
for short segments or excluded from scoring if multiple
consecutive epochs were affected.

PSG scoring adhered to the AASM Manual v2.6 criteria.
Nights with technician disagreement >15% or signal loss in
major PSG channels were excluded.

3.5.5. Interpretation of validation results
e The validity of the wearable system’s sleep-stage
classifier
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o The consistency of derived sleep metrics across nights

e The bias trends relevant for older adults with
fragmented sleep

These results establish the performance bounds and help
contextualize the intervention outcomes in the main study.

3.6.  Statistical Analysis and Sample Size

An a priori power analysis was performed to determine the
sample size required to detect within-subject changes in the
Pittsburgh Sleep Quality Index (PSQI) across the two-period
crossover. For paired (within-subject) comparisons the
required sample size can be approximated by:

(23,23 )2

- 5)

Assuming a two-sided a = 0.05, (Za/2=1.96), power=0.80

(Z3=0.842) and a conservative within-subject effect size of d
=0.50, the minimum required sample size was 32 participants.
To account for attrition and ensure feasibility of the PSG
substudy and model personalization, 40 participants were
prospectively enrolled.

Primary and secondary continuous outcomes were
analyzed using a linear mixed-effects model (LME)
appropriate for crossover trials. Each model included
Condition (IC vs. CC), Period (first vs. second), and Sequence
(IC—CC vs. CC—IC) as fixed effects, with a random

intercept for each participant to account for repeated measures.

The general model specification was:

PSQI;~Condition;+Period;;+Sequence;+(1 | Participant;) (6)

This structure follows CONSORT recommendations for
crossover trial analysis by explicitly modeling period and
sequence effects while estimating the within-subject treatment
effect.

Model assumptions—including normality of residuals,
homoscedasticity, and independence—were evaluated using
standardized diagnostic plots. When needed, outcomes with
skewed distributions (e.g., WASO) were log-transformed.

Missing data were addressed using multiple imputation by
chained equations (MICE):

e Number of imputations: m = 20

e Predictor matrix included all outcome wvariables,
demographic covariates, Condition, Period, and
Sequence

e Convergence was assessed via diagnostic trace plots

Analyses followed an intention-to-treat (ITT) framework,
with a complementary per-protocol (PP) analysis performed
to ensure robustness.

Secondary outcomes were corrected for multiple testing
using the Benjamini—-Hochberg false discovery rate (FDR)
procedure. Adjusted q-values were reported in addition to raw
p-values.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup and Evaluation Protocol

A controlled experimental platform was established to
evaluate the proposed personalized sleep monitoring and
intervention system in a real-world home environment. The
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data acquisition platform consisted of a multimodal wearable
sensing module and an embedded processing unit. The
sensing module integrated inertial measurement sensors (3-
axis accelerometer) and physiological signal acquisition units
(PPG, EDA), and the system firmware version was fixed
throughout all trials to ensure reproducibility and eliminate
software-version confounding.

A total of 40 community-dwelling older adults completed
the randomized two-period crossover protocol (mean age =
67.5+ 5.1 years; 12 females). Each participant underwent two
4-week experimental periods: an Intervention Condition (IC)
with fully activated adaptive functions and a Control
Condition (CC) with sensing-only functionality, separated by
a 7-day washout interval. The order of conditions (IC—CC or
CC—IC) was randomized.

Physiological and environmental data were continuously
collected during nightly sleep in habitual home settings over a
total monitoring duration of approximately 2,240 participant-
nights. Raw sensor streams were transmitted wirelessly to the
embedded processing module and securely stored for offline
algorithmic and statistical analysis.

Baseline sleep status indicated moderate disturbance
across the cohort, with a mean PSQI of 9.0 + 2.3. Baseline
wearable-derived total sleep time averaged 372 + 41 min and
sleep efficiency averaged 78.2 + 6.1%, consistent with mild
sleep fragmentation typically observed in older adults.Nights
with >30% signal loss or confirmed non-wear time were
excluded from objective analyses.

Statistical analyses followed the pre-specified plan (paired
tests and linear mixed-effects models). Primary inference used
LME with participant as a random intercept and fixed effects
for Condition, Period and Sequence; secondary outcomes
were tested with FDR correction for multiple comparisons.
Effect sizes (Cohen’s d) and 95% confidence intervals are
reported alongside p-values. Statistical significance was set at
p <0.05.

4.2.  System-Level Performance Evaluation

System-level performance was evaluated in terms of real-
time processing capability, operational stability, and energy
efficiency under continuous overnight operation.

The average end-to-end latency from raw signal
acquisition to sleep-stage inference was 132 + 28 ms,
demonstrating the system’s capacity to support real-time
closed-loop monitoring and intervention. The processing
pipeline maintained stable throughput over extended
recordings, with an observed frame loss rate below 0.5%
across all monitored nights.

Communication stability was quantified through wireless
packet loss and transmission failure monitoring. The system
achieved a mean packet loss rate of 0.7 + 0.4% under typical
home-network conditions, and no critical system failures or
safety events were recorded during the trial.

Energy performance testing showed that the wearable
module supported a mean continuous operating time of 28.3 £
3.1 hours per full charge, enabling full-night monitoring
without user recharging interruptions.
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4.3. Algorithm and Model Evaluation

The personalized sleep-staging model was evaluated
against a non-personalized baseline classifier using identical
input data streams.

The proposed model achieved a mean sleep-stage
classification accuracy of 81.6 + 4.3%, compared to 73.9 +
5.1% for the baseline model (A =+7.7%, p <0.001). Temporal
consistency of stage transitions, measured by Cohen’s «, was
significantly higher in the personalized model (k = 0.71 + 0.06)
than in the baseline (k = 0.60 £ 0.07, p < 0.001).

Ablation analysis demonstrated that disabling the
personalization module resulted in a mean performance
degradation of 6.4% in classification accuracy, confirming the
functional contribution of adaptive learning components.

Computational efficiency analysis showed that the model
maintained a mean inference time of 4.8 + 1.2 ms per epoch,
supporting reliable deployment on embedded hardware under
real-time constraints.

4.4. Human-Level Sleep Outcome Validation

Human-level outcome evaluation focused on clinically
relevant sleep quality indicators derived from both self-
reported and wearable-observed measures.

Across 40 participants, subjective sleep quality improved
significantly under the IC. The LME estimate for Condition
(IC vs CC) was B =—2.20 (SE = 0.28), yielding a mean within-
subject reduction in PSQI of —2.2 points (95% CI: —2.7 to
—1.7); 1(39) = —7.85, p < 0.001. The associated within-subject
Cohen’s d was 0.76 (medium—large). No significant sequence
or periodxcondition (carryover) interactions were observed
(p > 0.40).

Wearable-derived objective metrics (participant period
means) also improved during IC (FDR-corrected p), as shown
in Table 1.

TABLE L. COMPARISON OF KEY SLEEP QUALITY INDICATORS
BETWEEN CONTROL AND INTERVENTION CONDITIONS
Metric Control Intervention A p-value

TST (min) 374 +£41 392 +38 +18min  0.004
Sleep Efficiency 78.4+6.1 83.1£5.5 +4.6% <0.001
(%)

WASO (min) 520+16.8 435+15.2 -8.5 0.008

min
Fragmentation 18.6+4.1 16.0+3.8 -2.6 0.012

Index

These results indicate higher sleep efficiency and reduced
sleep fragmentation across most participants during the
intervention phase.

5. ANALYSIS AND DISCUSSION

5.1. System-Level Interpretation of Key Findings

This study demonstrates that a closed-loop, design-driven
wearable health system integrating multimodal sensing and
adaptive intervention can translate system-level performance
into clinically meaningful sleep improvements in older adults.
The personalized intervention produced an average PSQI
reduction of 2.2 points, exceeding the established threshold
for clinical relevance. Objective wearable-derived metrics,
including sleep efficiency, total sleep time, wake after sleep
onset (WASO), and sleep fragmentation index, showed
consistent and directionally aligned improvements with
moderate effect sizes.
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Importantly, the polysomnography (PSG) validation
substudy revealed moderate to strong correlations between
wearable-derived and PSG-derived sleep parameters (r =
0.68-0.79), confirming that the sensing and signal processing
pipeline preserved physiologically meaningful information.
These findings empirically validate the core system design
hypothesis: that low-latency sensing, real-time inference, and
adaptive feedback can operate as an effective cyber-physical
intervention loop rather than a passive monitoring tool.

5.2.  Mechanistic Explanation From a Systems
Engineering Perspective

From a systems engineering viewpoint, the observed
therapeutic effects can be attributed to the closed-loop
architecture of the proposed platform. The system integrates
three tightly coupled layers: (1) real-time multimodal data
acquisition, (2) adaptive inference and decision-making, and
(3) context-aware intervention delivery. This architecture
enables rapid detection of micro-disturbances in sleep
behavior and supports near-real-time micro-adjustments in
behavioral guidance.

Reinforcement learning (RL)-informed personalization
module functions as a sequential decision engine that
dynamically optimizes both intervention timing and modality
based on historical sleep trajectories and behavioral responses.
Unlike static rule-based systems, this adaptive control
mechanism continuously updates its policy through feedback,
allowing the system to track inter- and intra-individual
variability, which is especially pronounced in aging
populations.

In addition, multimodal sensor fusion (accelerometry
combined with photoplethysmography) increases the
observability of latent sleep states compared with single-
sensor approaches, thereby improving the controllability of
the behavioral intervention loop. Collectively, the results
indicate that architectural coherence between sensing,
inference, and actuation layers is a key determinant of real-
world intervention efficacy.

5.3.  Positioning Relative to Prior Digital Sleep Systems

Compared with prior work in digital sleep interventions,
this study advances the field in several engineering-relevant
dimensions. Most existing consumer-grade systems operate in
an open-loop paradigm, providing post hoc summaries rather
than real-time, adaptive control. The present system
implements a fully integrated closed-loop pipeline, enabling
continuous personalization and temporal optimization of
interventions.

Furthermore, while prior validation studies have
highlighted the limited accuracy of consumer wearables for
sleep staging, our findings demonstrate that a properly
calibrated multimodal sensing pipeline can achieve acceptable
agreement with PSG in ecologically valid home environments.
The observed bias in total sleep time (approximately 9 minutes)
and sleep efficiency (approximately 2%) falls within the range
reported by recent multisite validation studies, supporting the
feasibility of engineering-grade wearable sleep monitoring.

The use of a randomized crossover experimental design
further improves internal validity compared with conventional
parallel-group pilot trials, strengthening the causal
interpretability of system-level effects.
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5.4. Engineering Strengths of the Proposed System

This work exhibits several strengths from an engineering
and system design standpoint.

First, the platform represents a tightly integrated cyber-
physical system in which hardware sensing, embedded signal
processing, cloud-based inference, and human-facing
feedback interfaces were co-designed rather than evaluated in
isolation.

Second, the RL-based personalization mechanism
introduces an adaptive control layer that is rarely implemented
in current commercial digital health systems, enabling
continuous optimization of intervention policies.

Third, the system was evaluated in real-world,
uncontrolled home environments, demonstrating robustness
to noise, missing data, and behavioral variability, which are
critical considerations for scalable deployment.

Finally, the inclusion of a PSG validation substudy
provides an external physiological reference, strengthening
confidence in the reliability of the sensing and processing
pipeline.

5.5. Limitations and Engineering Trade-offs

Several limitations and engineering trade-offs should be
acknowledged. Although the sample size was sufficient to
detect moderate system-level effects, the study cohort was
geographically and demographically constrained, which may
affect generalizability. Wearable-based measurements
inherently trade fine-grained physiological resolution for
scalability, comfort, and ecological validity, particularly in
comparison with full polysomnography.

While the crossover design reduces inter-individual
variance, residual carryover effects cannot be entirely
excluded despite statistical testing. In addition, the current RL
reward structure and policy update rules were intentionally
simplified to ensure system stability and safety, which may
limit long-term optimality in behavioral adaptation. Future
system iterations should explore more sophisticated reward
shaping and safety-constrained learning strategies.

5.6. Implications for Future Cyber-Physical Health
Systems

The findings of this work have broader implications for the
design of intelligent health cyber-physical systems.
Integrating low-latency sensing, adaptive intelligence, and
human-centered interface design into a unified closed-loop
architecture can transform wearable systems from passive
trackers into active therapeutic agents.

Future development should focus on extending the sensing
context to include environmental variables such as ambient
light, sound, and device interaction patterns, as well as on
implementing explainable adaptive policies to improve
clinical transparency and user trust. Longitudinal, multi-
month deployments will be essential to evaluate stability,
safety, and sustained behavioral change.

At a system level, this study provides a scalable
architectural blueprint for next-generation gerontechnology
platforms, demonstrating how sensing hardware, adaptive
algorithms, and human-centered feedback can be coherently
integrated into clinically meaningful engineering systems.
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6. CONCLUSION

This study presents an integrated smart wearable system
that combines multimodal physiological sensing, adaptive
personalization, and  age-oriented = human—computer
interaction to improve sleep outcomes in older adults.
Through a randomized crossover experimental design and a
targeted polysomnography (PSG) validation substudy, the
system demonstrated significant improvements in both
subjective and objective sleep indicators, including PSQI,
sleep efficiency, wake after sleep onset, and sleep
fragmentation. The observed agreement between wearable-
derived and PSG-derived metrics further confirms the
physiological reliability of the sensing and processing pipeline
in naturalistic home environments.

Beyond clinical performance, this work contributes an
engineering-level framework for designing closed-loop digital
health systems for aging populations. The system architecture
integrates real-time signal acquisition, low-latency inference,
and context-aware micro-interventions, enabling continuous
adaptation to individual sleep patterns. The reinforcement-
learning—inspired personalization engine provides a scalable
mechanism for sequential decision optimization, moving
wearable systems from passive monitoring toward active,
personalized digital therapeutics.

Several limitations should be acknowledged. The current
study involved a moderate sample size and a relatively short
intervention window, and wearable-based measurements
inherently trade high-resolution physiology for comfort and
scalability. Although the crossover design mitigates inter-
individual variability, larger and more diverse cohorts and
longer deployment periods will be necessary to validate long-
term robustness and generalizability. In addition, the current
adaptive policy design prioritizes system stability and user
safety, which may constrain long-term optimization
performance.

Future work will focus on expanding the sensory context
(e.g., ambient light, sound, and behavioral patterns), refining
the reward structure of the adaptive engine, and incorporating
clinician-in-the-loop and explainable Al mechanisms. These
extensions will be essential for supporting clinical translation,
regulatory acceptance, and large-scale deployment.

In summary, this study provides empirical and system-
level evidence that a design-driven, adaptive wearable
platform can function as a feasible, acceptable, and effective
tool for improving sleep quality in older adults. The proposed
architecture offers a scalable blueprint for next-generation
gerontechnology systems aimed at promoting healthy aging
and reducing the societal burden of sleep-related disorders.
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