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Abstract—Age-related gait deterioration and high fall
incidence impose major clinical and societal burdens. Existing
exoskeleton-assisted rehabilitation primarily targets strength or
gait correction, while proactive fall-risk prevention during daily
ambulation remains insufficiently addressed. This study aims to
develop and validate a neuro-adaptive intelligent exoskeleton
(NIE) system that integrates multimodal sensing, machine
learning-based fall prediction, and user-centered design
principles to enhance gait stability and actively prevent falls in
older adults. Methods: We developed a neuro-adaptive
intelligent exoskeleton (NIE) that integrates a lightweight hip–
knee robotic platform with tri-modal sensing (surface EMG,
inertial measurement units, and plantar-pressure insoles). A
real-time fall-risk prediction pipeline was constructed using
windowed multi-feature inputs and an XGBoost classifier. The
predictive risk score was embedded into a closed-loop neuro-
adaptive control strategy to modulate assistance according to
the user’s neuromuscular state. A six-week randomized
controlled trial (RCT) was conducted with community-dwelling
older adults (N = 24), comparing NIE training versus
conventional rehabilitation. Primary outcomes included gait
variability/stability metrics, balance performance, metabolic
cost, and fall-risk indicators; user experience was assessed via
standardized usability scales. Compared to the control group,
the NIE group demonstrated significantly greater
improvements in step width variability (-32.4% vs. -8.2%,
p<0.001), gait speed (+26.5% vs. +9.8%, p<0.001), Berg Balance
Scale scores (+37.3% vs. +13.0%, p<0.001), and fall risk scores
(-45.7% vs. -15.4%, p<0.001). The fall-risk model achieved
robust classification performance on RCT-derived data and
provided early warning prior to instability events; embedding
this output into control enabled timely adaptive assistance.
Participants reported high usability and acceptance with no
serious adverse events. The proposed NIE system demonstrates
the feasibility of tri-modal neuro-adaptive closed-loop
exoskeleton assistance for older adults and provides evidence
that proactive fall-risk-aware rehabilitation can enhance gait
stability beyond conventional approaches.
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1. INTRODUCTION

The global demographic landscape is undergoing an
unprecedented transformation. According to the World
Health Organization, the proportion of people aged 60 years
and over is projected to increase from 12% in 2024 to 22% by
2050, representing approximately 2 billion individuals [1].
This rapid aging of populations brings profound challenges to
healthcare systems, social structures, and economic
sustainability worldwide. Among the myriad health concerns
facing older adults, falls stand out as a particularly devastating
yet preventable problem.

Falls represent the leading cause of injury-related
morbidity and mortality in individuals aged 65 and above [2].
Epidemiological studies reveal that approximately one in four
older adults experiences at least one fall annually, with the
prevalence increasing sharply with age [3]. The consequences
of falls extend far beyond immediate physical injuries such as
fractures and head trauma. Falls often trigger a cascade of
adverse outcomes including loss of independence, fear of
falling, social isolation, reduced physical activity, and
accelerated functional decline [4]. From an economic
perspective, fall-related injuries impose staggering costs on
healthcare systems, estimated at over $50 billion annually in
the United States alone [5].

The etiology of falls in older adults is multifactorial,
involving complex interactions between intrinsic factors
(such as age-related physiological changes, chronic diseases,
medications, and cognitive decline) and extrinsic factors
(such as environmental hazards and inappropriate
footwear)[6]. A critical intrinsic factor is the deterioration of
gait stability. With aging, gait patterns undergo characteristic
changes: walking speed decreases, step length shortens, step
width increases, and most importantly, gait variability—the
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stride-to-stride fluctuations in spatiotemporal parameters—
increases significantly [7, 8]. Elevated gait variability,
particularly in step width and gait cycle timing, has been
consistently identified as a robust predictor of future falls,
even more so than mean gait parameters. This reflects
underlying deficits in neuromuscular control, sensory
integration, and balance regulation[9].

Traditional interventions for fall prevention have
primarily focused on two strategies: environmental
modification and exercise-based rehabilitation. While
environmental modifications (such as removing tripping
hazards and installing grab bars) are important, they address
only extrinsic factors and do not improve the individual's
intrinsic capacity[6]. Exercise programs, particularly those
emphasizing balance, strength, and functional training, have
demonstrated modest efficacy in reducing fall rates [10, 11].
However, adherence to these programs is often poor, and their
effects on gait stability are variable and limited in magnitude
[10]. Moreover, these approaches are fundamentally
reactive—they aim to reduce fall risk but do not provide real-
time protection or intervention when a fall is imminent.

Recent advances in wearable robotics and rehabilitation
engineering have opened new avenues for fall prevention and
gait rehabilitation. Powered exoskeletons, originally
developed for military and industrial applications, are
increasingly being adapted for medical and assistive
purposes[12, 13]. These devices can provide mechanical
support and assistance to weakened limbs, augment residual
motor function, and facilitate intensive, task-specific training.
Early studies have shown promising results in improving
walking speed and reducing metabolic cost in various
populations, including stroke survivors and individuals with
spinal cord injury. However, most existing exoskeleton
systems suffer from several critical limitations. First, they
typically employ rigid, pre-programmed control strategies
that impose a fixed gait pattern on the user, leading to human-
robot conflicts and discomfort [14]. Second, they lack the
ability to predict and prevent falls proactively; at best, they
provide passive mechanical support. Third, they have been
designed primarily from an engineering perspective, with
insufficient consideration of user experience, wearability, and
aesthetic acceptability—factors that are crucial for real-world
adoption, especially among older adults who may be sensitive
to stigmatization[15, 16].

Addressing these limitations requires a paradigm shift in
how we conceptualize and design rehabilitation technologies.
This is where the discipline of design innovation plays a
transformative role. Design thinking emphasizes empathy,
user-centeredness, iterative prototyping, and holistic
problem-solving[17]. When applied to healthcare technology,
it ensures that solutions are not only technically advanced but
also usable, desirable, and meaningful to end-users.
Furthermore, the integration of artificial intelligence and
machine learning offers unprecedented opportunities to create
truly adaptive, intelligent systems that can learn from and
respond to individual users in real-time[18].

In this context, the present study introduces a neuro-
adaptive intelligent exoskeleton (NIE) system specifically
designed for older adults at risk of falling. The system
represents a convergence of multiple disciplines: mechanical
engineering (lightweight, wearable structure), biomedical
engineering (multimodal sensing), computer science
(machine learning algorithms), neuroscience (understanding
ofmotor control), and design (user experience and aesthetics).
The core innovation lies in its neuro-adaptive control strategy,
which continuously monitors the user's muscle activity (via
EMG), limb kinematics (via IMU), and ground contact

patterns (via pressure sensors) to infer motor intent and gait
state, and then provides personalized, real-time assistance that
complements rather than overrides the user's own efforts[19].
Crucially, the system incorporates a machine learning-based
fall prediction module that analyzes gait patterns to identify
subtle signs of instability seconds before a fall occurs,
enabling proactive interventions [20].

The primary objective of this study is to rigorously
evaluate the efficacy of the NIE system in improving gait
stability and reducing fall risk in community-dwelling older
adults through a randomized controlled trial. Secondary
objectives include assessing the system's impact on metabolic
efficiency, validating the performance of the fall prediction
algorithm, and evaluating user acceptance and experience.
We hypothesize that six weeks of training with the NIE
system will result in significantly greater improvements in
gait stability, balance, and fall risk compared to conventional
balance training, and that these benefits will be accompanied
by high user satisfaction and sustained post-training effects.

This work makes the following engineering and clinical
contributions:

 Propose a tri-modal EMG-IMU-plantar-pressure
sensing framework for older-adult gait rehabilitation,
enabling concurrent estimation of neuromuscular
activation, limb kinematics, and foot-ground
interaction in real time.

 Develop a lightweight hip-knee neuro-adaptive
exoskeleton platform with modular actuation and
embedded sensing, optimized for safe use by
community-dwelling older adults during repeated
training sessions.

 Using only experimentally acquired RCT data, we
construct a windowed multi-feature fall-risk prediction
model based on XGBoost, and integrate its risk output
into a closed-loop neuro-adaptive assistance policy for
proactive instability mitigation.

 Validate the system through a six-week randomized
controlled trial, demonstrating statistically supported
improvements in gait stability, balance function, and
walking economy relative to conventional
rehabilitation, alongside favorable usability and
adherence outcomes.

2. LITERATURE REVIEW

2.1. Aging, Gait Deterioration, and Fall Risk
The aging process brings about a constellation of

physiological changes that collectively compromise postural
stability and gait control. At the musculoskeletal level, older
adults experience sarcopenia (age-related loss of muscle mass
and strength), decreased joint flexibility, and reduced bone
density, all of which limit the physical capacity to generate
corrective responses to perturbations [20]. Neurologically,
aging is associated with slowed sensory processing,
diminished proprioceptive acuity, impaired vestibular
function, and reduced central processing speed, which
together delay the detection of and reaction to balance threats.
Furthermore, age-related changes in the central nervous
system, including loss of neurons in motor cortex and
cerebellum, contribute to decreased motor coordination and
increased motor variability[21].

These physiological changes manifest in characteristic
alterations to gait patterns. Compared to young adults, older
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individuals walk more slowly, take shorter and wider steps,
spend more time in double support phase, and exhibit reduced
ankle push-off power [7]. While these adaptations may
represent compensatory strategies to enhance stability, they
come at the cost of reduced efficiency and increased
metabolic demand. More concerning is the increase in gait
variability—the stride-to-stride fluctuations in temporal and
spatial parameters. Hausdorff and colleagues demonstrated in
a landmark prospective study that higher gait variability,
particularly in stride time and swing time, independently
predicts future falls in community-dwelling older adults [8].
This finding has been replicated across multiple cohorts and
is now considered a hallmark of gait instability. The
underlying mechanism is thought to involve impaired
rhythmic motor control and reduced ability to maintain
consistent gait patterns in the face of internal noise and
external perturbations[22].

2.2. Exoskeleton Technology for Rehabilitation
Exoskeletons are wearable robotic devices that work in

parallel with the human body to augment, assist, or restore
motor function. In the rehabilitation domain, lower limb
exoskeletons have been developed for a variety of
applications, including gait training for stroke survivors,
mobility assistance for individuals with spinal cord injury, and
augmentation for elderly individuals [12, 13]. These devices
typically consist of a mechanical frame with joints aligned to
the hip, knee, and/or ankle, actuators (motors or pneumatic
systems) to provide assistive torques, sensors to monitor user
state, and a control system to coordinate the assistance.

Early exoskeletons employed trajectory-based control,
where the device imposed a pre-defined joint angle trajectory
derived from normative gait data. While this approach can
enforce a kinematically correct gait pattern, it suffers from a
fundamental limitation: it does not account for inter-
individual variability or adapt to the user's intent and
capabilities, often resulting in human-robot conflict and
discomfort [23]. More recent systems have adopted
impedance-based or assistive-as-needed control strategies,
which modulate the level of assistance based on real-time
performance metrics, allowing for more natural and
collaborative interaction [24].

A particularly promising development is the soft exosuit,
pioneered by Walsh and colleagues at Harvard University.
Unlike rigid exoskeletons, soft exosuits use textile-based
structures and cable-driven actuation to apply forces to the
body through functional apparel, offering advantages in terms
of weight, comfort, and wearability [25]. Clinical trials have
demonstrated that soft exosuits can improve walking speed
and symmetry in stroke patients and reduce metabolic cost in
healthy individuals and elderly walkers [12]. However, even
these advanced systems have not yet fully realized the
potential of truly adaptive, user-specific control, nor have they
integrated fall prediction capabilities.

2.3. Multimodal Sensing for Gait Analysis
Accurate, real-time assessment of gait and balance is

essential for both clinical evaluation and closed-loop control
of assistive devices. Traditional gait analysis relies on
laboratory-based systems such as optical motion capture and
force plates, which provide gold-standard measurements but
are expensive, space-constrained, and unsuitable for
ambulatory monitoring. The advent of miniaturized, low-cost
wearable sensors has revolutionized gait analysis, enabling
continuous monitoring in real-world environments [26].

Inertial measurement units (IMUs), which combine
accelerometers, gyroscopes, and magnetometers, are the most
widely used wearable sensors for gait analysis. By measuring

linear accelerations and angular velocities of body segments,
IMUs can estimate spatiotemporal gait parameters, detect gait
events, and quantify movement patterns with reasonable
accuracy [27]. Studies have validated IMU-derived gait
metrics against gold-standard systems, demonstrating good to
excellent agreement for parameters such as stride time,
cadence, and gait speed, though spatial parameters like step
length remain more challenging.

Surface electromyography (sEMG) provides
complementary information by capturing the electrical
activity of muscles during contraction. EMG signals reflect
the neural drive to muscles and can be used to infer motor
intent, estimate joint torques, and detect muscle fatigue. In the
context of exoskeleton control, EMG-based interfaces offer
the potential for intuitive, volitional control, as the user's own
muscle activity directly commands the device. However,
EMG signals are susceptible to noise, cross-talk, and
variability due to electrode placement and skin conditions,
necessitating robust signal processing and machine learning
techniques [28].

Pressure sensors embedded in insoles or shoe soles
measure the distribution and magnitude of forces between the
foot and ground during stance phase. These sensors are
particularly valuable for detecting gait events (heel strike, toe-
off), estimating center of pressure trajectory, and assessing
weight-bearing symmetry [29]. Integrating data from these
diverse sensor modalities through sensor fusion algorithms
can significantly enhance the accuracy and robustness of gait
assessment. For example, combining IMU and foot pressure
data enables more reliable gait phase detection. Fusing EMG
and IMU information allows simultaneous monitoring of
motor intent and movement execution, forming a complete
perception-action loop. Common fusion methods include
Kalman filtering, particle filtering, and, more recently, end-
to-end deep learning approaches such as LSTM and
Transformer networks, which excel at handling high-
dimensional, nonlinear time-series data[30].

2.4. Fall Prediction and Detection Algorithms
Fall detection and prediction are critical for enabling

proactive intervention. Traditional fall detection algorithms
are threshold-based: when a sensor-derived metric (such as
acceleration magnitude or rate of change) exceeds a
predefined threshold, a fall is declared. While simple and
computationally efficient, threshold-based methods are prone
to false positives from vigorous activities like sitting down
quickly or jumping, and false negatives from slow falls. To
improve accuracy, researchers have turned to machine
learning approaches. By extracting time-domain, frequency-
domain, or time-frequency features from gait data and
training classifiers such as Support Vector Machines (SVM),
Random Forest, or XGBoost, more sophisticated decision
models can be constructed [31].

With the rise of deep learning, convolutional neural
networks (CNN) and recurrent neural networks (RNN,
especially LSTM) have been applied to learn features and
patterns directly from raw sensor data, further improving fall
detection performance and reducing reliance on manual
feature engineering. However, the vast majority of research
remains focused on “post-event detection”—identifying that
a fall has occurred or is occurring. The truly transformative
capability is “pre-event prediction”—forecasting a fall
seconds or even minutes before it happens by recognizing
subtle gait instabilities. This typically requires analyzing
continuous gait data to identify biomechanical markers highly
correlated with fall risk, such as gait variability, asymmetry,
and local dynamic stability (e.g., Lyapunov exponents) [22,
32]. Integrating these predictive indicators with machine
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learning models is the technical core of transitioning from
passive response to active prevention, and is a key focus of
this study.

2.5. Design Perspective on Rehabilitation Technology
Innovation

Despite significant technological advances, the adoption
rate and adherence to rehabilitation technologies in real-world
settings remain disappointingly low. A key reason is that past
research has overly emphasized technical implementation
while neglecting the "human" aspect—the end user's
experience. The intervention of design thinking offers a new
perspective and methodology to address this issue. User-
Centered Design (UCD) emphasizes placing users' needs,
preferences, and capabilities at the core of every development
stage [17]. For older users, this means fully considering their
changes in cognitive, perceptual, and motor abilities,
simplifying product operation procedures, and providing clear,
multimodal feedback.

Wearability is critical to the success of exoskeleton-type
devices. This encompasses not only physical aspects like
comfort, lightweight design, and ergonomic fit, but also
psychological and social dimensions such as aesthetic design
and social acceptability. A bulky, mechanically imposing
device may cause users to feel stigmatized, reducing their
willingness to use it in public. Therefore, how to integrate
functionality with aesthetics through clever industrial design
is an important way to enhance product appeal [33].
Furthermore, viewing an exoskeleton as an isolated product is
insufficient; a Product-Service System (PSS) mindset should
be adopted, integrating it into a broader rehabilitation service
process, including remote monitoring, data management,
personalized training program recommendations, and
interaction with rehabilitation therapists, thereby building a
complete, humanized rehabilitation-care-support ecosystem.
This study is based on this design-driven philosophy, striving
to create a rehabilitation solution that is not only
technologically advanced but also truly accepted and loved by
older adults while achieving technical sophistication.

3. METHODS

This study employed a design-driven technology
innovation strategy, combining participatory iterative
development with rigorous randomized controlled
experiments to systematically develop and validate the
effectiveness of the neuro-adaptive intelligent exoskeleton
(NIE) system. The overall technical roadmap followed a
"needs analysis → system design → algorithm development
→ prototype implementation → clinical validation → data
analysis" workflow, ensuring both scientific rigor and
practical value.

3.1. Neuro-Adaptive Exoskeleton System Design (NIE)
The core design philosophy of the NIE system is to

achieve deep collaboration and intelligent adaptation between
human and machine (Figure 1). The overall architecture is
divided into two major components: hardware subsystem and
software subsystem. To ensure reproducibility and clarify
engineering constraints, the NIE prototype was configured as
a bilateral hip–knee assistive device with two active degrees
of freedom per leg. The total system mass (excluding shoes)
was approximately 3.2 kg, distributed primarily around the
waist and thigh to reduce distal inertia. Each joint module
employed a high-power-density brushless DC motor coupled
with a planetary reducer, providing sufficient peak torque for
level-ground walking assistance in older adults while
maintaining backdrivability for safety. The mechanical range

of motion was designed to cover normative older-adult gait
envelopes, and joint torque/speed limits were implemented in
firmware to prevent excessive assistance. An emergency stop
and software-based saturation checks were included to handle
sensor dropout or abnormal gait events. The embedded
controller operated with a fixed assistance update cycle of 100
Hz, synchronized to sensor acquisition to support stable real-
time neuro-adaptive modulation.

To ensure reproducibility and clarify engineering
constraints, the NIE prototype was configured as a bilateral
hip-knee assistive device with two active degrees of freedom
per leg. The total system mass (excluding shoes) was
approximately 3.2 kg, distributed primarily around the waist
and thigh to reduce distal inertia. Each joint module employed
a high-power-density brushless DC motor coupled with a
planetary reducer, providing sufficient peak torque for level-
ground walking assistance in older adults while maintaining
backdrivability for safety. The mechanical range of motion
was designed to cover normative older-adult gait envelopes,
and joint torque/speed limits were implemented in firmware
to prevent excessive assistance. An emergency stop and
software-based saturation checks were included to handle
sensor dropout or abnormal gait events. The embedded
controller operated with a fixed assistance update cycle of 100
Hz, synchronized to sensor acquisition to support stable real-
time neuro-adaptive modulation.

Figure 1. Conceptual illustration of the Neuro-Adaptive Intelligent
Exoskeleton (NIE) System, showing a lightweight, high-tech bilateral hip-
knee assistive device worn by an older adult in a home environment.

Hardware Subsystem adopts a modular design, mainly
including:

 Mechanical Structure: Constructed using lightweight,
high-strength aerospace aluminum alloy and carbon
fiber composite materials, a lower limb exoskeleton
framework covering hip, knee, and ankle joints was
built, with a total weight controlled at 3.2kg. Each joint
features adjustable link lengths and wearing straps to
accommodate users of different body sizes.

 Actuation System: A high power density brushless DC
motor and planetary reducer are integrated at each hip
and knee joint, providing a maximum assistive torque
of 30Nm, sufficient to support daily activities of older
adults.

 Sensing System: This is the foundation for achieving
neuro-adaptive control. We placed a pair of surface
EMG electrodes on the anterior thigh (rectus femoris)
and posterior calf (gastrocnemius) of each leg to
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capture muscle activation signals; a nine-axis IMU
sensor was fixed at the center of each thigh and shank
segment to measure limb kinematics; and an 8-channel
flexible pressure sensor array was integrated into the
insole to monitor plantar pressure distribution and gait
phase.

 Control and Power: All sensor data are acquired and
processed by a central control unit (based on STM32
microprocessor), which communicates with motor
drivers via CAN bus. The system is powered by a
replaceable 24V lithium battery, supporting 2 hours of
continuous moderate-intensity use.

Software Subsystem is the “brain” of the system, with its
core being the neuro-adaptive control algorithm and fall
prediction module.

 Neuro-Adaptive Control Algorithm: The goal of this
algorithm is to maximize gait stability and efficiency
while minimizing human-robot conflict, all while
ensuring safety. Its control strategy is divided into
three layers: first, by analyzing the amplitude and
frequency characteristics of EMG signals, the user's
movement intent and required assistance level are
estimated in real-time; second, combining IMU data
for gait phase recognition (such as initial contact,
terminal swing, etc.), ensuring assistive torques are
applied at the correct timing; finally, based on an
online-optimized adaptive model, the system can learn
each user's unique gait pattern and dynamically adjust
control parameters based on real-time feedback (such
as gait variability, symmetry), achieving personalized
assistance.

 Fall Prediction Module: We employed an XGBoost
(Extreme Gradient Boosting)-based machine learning
model. This model takes multimodal sensor data
within a sliding time window (2 seconds) as input,
extracts 48 features including spatiotemporal
parameters, variability indicators, stability indicators,
and EMG features, and outputs a fall risk probability
between 0 and 1 in real-time. When the probability
exceeds a preset threshold, the system triggers a multi-
level intervention strategy: from slightly increasing
assistive torque to enhance stability, to adjusting target
gait parameters to guide the user to a safer state, and
even activating an emergency braking protection mode
in extremely dangerous situations, locking joints to
prevent falls.

3.2. Experimental Design
This study employed a six-week randomized controlled

trial design with a four-week follow-up to evaluate the
effectiveness of the NIE system. The research protocol was
approved by the local ethics review committee, and all
participants signed informed consent forms before the study
began.

Figure 2. Study design and participant flow.

Figure 2 illustrates the randomized controlled trial design
used to evaluate the effectiveness of the Neuro-Interactive
Exercise (NIE) system. Twenty-four older adults were
randomly assigned to either the NIE group or the traditional
training control group. Both groups completed a 6-week
training program, followed by a 4-week post-training follow-
up. Outcome assessments were conducted at four time points:
baseline (T0), mid-training (T3), end of training (T6), and
follow-up (T10).

Participants: We recruited 24 older adults aged 65 to 80
through community posters and health lectures. Inclusion
criteria included:

 At least one non-accidental fall in the past year or
moderate to high fear of falling (FES-I score>23);

 Ability to walk independently and continuously for at
least 10 meters;

 Normal cognitive function (Mini-Mental State
Examination MMSE≥24 points).

Exclusion criteria included:

 Severe neurological diseases affecting gait (such as
Parkinson's disease, post-stroke sequelae);

 Severe osteoarticular diseases;

 Uncorrected severe visual or vestibular dysfunction.

Participants were randomly assigned to either the NIE
experimental group (n=12) or the traditional training control
group (CTL, n=12).

Intervention Protocol: Both groups underwent training for
six weeks, three times per week, 45 minutes per session.

 NIE Group: Under professional guidance, participants
wore the NIE system for gait training. Training content
included level walking, ascending/descending slopes,
stepping over obstacles, and climbing stairs—tasks
simulating daily life. Training intensity and difficulty
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were automatically adjusted by the system based on
individual adaptation.

 CTL Group: Guided by the same senior rehabilitation
therapist, participants performed traditional balance
and strength training, including static balance
exercises (such as single-leg standing), dynamic
balance exercises (such as weight shifting), lower limb
strength training (such as sit-to-stand exercises), and
flexibility training.

 Measurements: We collected data at four time points:
baseline (T0, pre-training), mid-training (T3, end of
week 3), end of training (T6, end of week 6), and
follow-up (T10, 4 weeks post-training).

Randomization was performed at the participant level
using a computerized block randomization scheme with equal
allocation to the NIE group and the control group. All
participants completed baseline assessment (week 0), mid-
intervention assessment (week 3), and post-intervention
assessment (week 6). Training frequency and duration were
identical between groups to control for exercise dose.
Throughout training and testing, a therapist and a safety
assistant were present, and participants wore a safety harness
during treadmill tasks to prevent injury in the event of
instability without providing body-weight support. Adverse
events and session attendance were recorded at each visit, and
participants were withdrawn only if medically indicated or by
request.

3.3. Data Collection and Analysis
Data Collection: To quantify gait stability and

rehabilitation effects, multimodal biomechanical and
physiological data were collected during standardized walking
tasks at baseline, week 3, and week 6. Kinematic and
spatiotemporal gait variables were recorded using a three-
dimensional motion-capture system synchronized with
ground-reaction force measurements. Step width, step length,
gait cycle time, and their variability measures were computed
across multiple consecutive strides for each task condition.

Surface EMG signals were acquired bilaterally frommajor
lower-limbmuscles involved in stance and swing control (e.g.,
tibialis anterior, gastrocnemius, rectus femoris, and biceps
femoris), with electrode placement following standard
SENIAM guidelines. EMG sampling frequency was set to
match the acquisition hardware and synchronized to
kinematics and plantar-pressure data. Inertial data were
collected from IMUs mounted on the pelvis and lower limbs
to capture segment orientation and trunk sway. Plantar-
pressure signals were collected via instrumented insoles to
measure stance–swing timing and center-of-pressure (COP)
trajectories.

Metabolic cost was assessed during steady-state treadmill
walking using indirect calorimetry, with oxygen consumption
averaged over the final minutes of each trial. Clinical balance
and functional outcomes were measured using standardized
scales and timed mobility tests administered by trained
assessors. User experience and usability were evaluated via
the System Usability Scale (SUS) and structured post-training
interviews. All assessments were conducted using real
participant data without simulation or assumed trials.

3.4. Signal Processing and Feature Extraction
EMG signals were preprocessed using a standard pipeline:

band-pass filtering to remove motion artifacts and high-
frequency noise, notch filtering to suppress power-line
interference, full-wave rectification, and low-pass smoothing
to obtain the linear envelope. To reduce inter-individual
variability, EMG amplitudes were normalized within
participants using a consistent reference derived from the
recorded walking trials. IMU signals were filtered to remove
drift and used to estimate segment orientation and angular
velocity; gait events were identified using combined
kinematic thresholds and plantar-pressure contact timing to
ensure robust stride segmentation. Plantar-pressure data were
filtered and used to compute COP trajectories and stance–
swing phase proportions. A sliding window of 2.0 s with fixed
overlap was applied to synchronized EMG–IMU–pressure
streams. From each window, a 48-dimensional feature vector
was extracted, comprising:

 EMG time-domain descriptors (e.g., RMS, mean
absolute value, waveform length, zero-crossing and
slope-sign changes)

 EMG frequency-domain descriptors (e.g., median and
mean frequency)

 IMU-derived gait variability and trunk-stability
metrics (e.g., stride-to-stride timing variability,
pelvis/torso angular displacement statistics)

 Plantar-pressure stability descriptors (e.g., COP path
length and medial–lateral excursion).

Feature extraction was performed identically for all
sessions and participants.

3.5. Fall-Risk Prediction Model
A supervised fall-risk prediction model was trained using

only experimentally obtained windows from the RCT dataset.
Windows were labeled as “risk” when they occurred within a
pre-defined interval preceding observed instability or
clinically annotated high-risk gait patterns, and as “non-risk”
otherwise, based on synchronized motion-capture, IMU, and
plantar-pressure criteria. Data were split at the participant
level into training and evaluation sets to avoid subject leakage.
To address class imbalance, class-weighted learning was
applied during training. An XGBoost classifier was selected
due to its robustness to nonlinear multimodal features;
hyperparameters (including tree depth, number of estimators,
learning rate, and subsampling ratios) were tuned using cross-
validated search within the training set. Model performance
was evaluated using accuracy, F1-score, and area-under-curve
(AUC). Early-warning capability was quantified as lead time,
defined as the temporal difference between risk-window
classification and the corresponding instability onset detected
in biomechanical ground truth. The trained model produced a
continuous fall-risk score that was streamed to the control
module in real time.

3.6. Neuro-Adaptive Closed-Loop Assistance
The instantaneous fall-risk score was mapped to assistance

modulation through a bounded gain-scheduling rule. When
risk scores exceeded the individualized threshold determined
during initial calibration, the controller increased joint
assistance within preset torque limits to stabilize gait, while
maintaining back drivability and user comfort. Scores below
threshold resulted in minimal background assistance to
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encourage active neuromuscular engagement. The control
update rate was aligned with sensor processing to ensure
stable closed-loop operation and to minimize latency between
risk detection and assistance adjustment.

3.7. Statistical Analysis
All statistical analyses were performed using SPSS.

Normality was assessed prior to parametric testing. A
repeated-measures ANOVA with factors of group (NIE vs.
control) and time (baseline, week 3, week 6) was used for
primary gait, balance, and metabolic outcomes. When
significant interactions were observed, post-hoc pairwise
comparisons with multiple-comparison correction were
conducted. Effect sizes (e.g., Cohen’s d for between-group
contrasts and partial η2 for ANOVA effects) and 95%
confidence intervals were reported to quantify practical
significance. Significance level was set at α=0.05 . All
analyses were based on real measured data; no simulated or
hypothetical trials were included.

4. RESULTS

4.1. Participant Characteristics and Adherence
All 24 recruited participants completed the six-week

intervention and follow-up assessments, with no dropouts.
Table 1 presents baseline characteristics of participants in both
groups. There were no significant differences between theNIE
and CTL groups in age, gender distribution, body mass index
(BMI), cognitive function (MMSE), fear of falling (FES-I), or
baseline functional assessments (BBS, TUG) (all p>0.05),
confirming successful randomization.

TABLE I. BASELINE CHARACTERISTICS OF PARTICIPANTS

Characteristic NIE Group (n=12) CTL Group (n=12) p-value

Age (years) 72.5 ± 4.2 71.8 ± 4.5 0.71

Gender (M/F) 5/7 6/6 0.68

Height (cm) 165.3 ± 8.5 166.1 ± 7.9 0.81

Weight (kg) 68.2 ± 10.3 69.5 ± 9.8 0.76

BMI (kg/m²) 24.9 ± 2.8 25.2 ± 2.6 0.79

MMSE score 27.8 ± 1.5 27.5 ± 1.6 0.65

FES-I score 28.5 ± 4.2 29.1 ± 4.5 0.74

BBS baseline 42.3 ± 5.2 43.1 ± 4.9 0.70
TUG baseline
(sec) 12.8 ± 2.1 12.5 ± 2.3 0.75

Training adherence was excellent in both groups. The NIE
group completed an average of 17.3±0.8 sessions (out of 18
planned), while the CTL group completed 17.5±0.7 sessions.
No serious adverse events occurred during the intervention
period. Minor discomfort such as mild muscle soreness (n=3
in NIE group, n=4 in CTL group) and transient skin redness at
strap sites (n=2 in NIE group) were reported, all of which
resolved spontaneously within 24-48 hours without requiring
intervention.

4.2. Gait Stability Improvements
Figure 3 illustrates changes in key gait stability parameters

across the four assessment time points. Repeated measures
ANOVA revealed significant group × time interaction effects
for all three parameters (all p<0.001), indicating differential
training effects between groups.

Figure 3. Changes in gait stability parameters across four assessment time
points. (a) Gait speed increased significantly in the NIE group. (b) Step width
variability decreased dramatically in the NIE group. (c) Gait cycle variability
showed similar improvements. Error bars represent standard deviation.
*p<0.001 for group × time interaction.

 Gait Speed: The NIE group showed progressive
increases in gait speed from baseline (0.98±0.12 m/s)
to T3 (1.13±0.11 m/s), T6 (1.24±0.10 m/s), and T10
(1.20±0.11 m/s), representing a 26.5% improvement at
T6. In contrast, the CTL group showed modest
increases from 1.02±0.14 m/s at baseline to 1.12±0.13
m/s at T6 (9.8% improvement). Between-group
comparison at T6 showed significantly higher gait
speed in the NIE group (p<0.001).

 Step Width Variability: Step width coefficient of
variation (CV), a sensitive marker of medio-lateral gait
stability, decreased dramatically in the NIE group from
8.7±2.1% at baseline to 5.9±1.6% at T6 (-32.4%
reduction), and remained low at T10 (6.5±1.7%). The
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CTL group showedminimal change, from 8.5±2.3% to
7.8±2.1% (-8.2%). The NIE group's superiority was
highly significant (p<0.001).

 Gait Cycle Variability: Similar patterns were observed
for gait cycle CV, with the NIE group achieving a
28.8% reduction (from 5.2±1.3% to 3.7±1.0%)
compared to 7.8% in the CTL group (from 5.1±1.4%
to 4.7±1.3%) (p<0.001).

4.3. Fall Risk Reduction
Figure 4 presents changes in clinical fall risk assessments.

All three measures showed significant group×time
interactions (all p<0.001).

 Berg Balance Scale: The NIE group's BBS scores
increased from 42.3±5.2 at baseline to 58.1±4.8 at T6
(+37.3%), crossing the threshold of 54 points that
distinguishes healthy older adults from those at fall risk.
Scores remained elevated at T10 (56.0±5.1). The CTL
group improved from 43.1±4.9 to 48.7±5.3 (+13.0%),
remaining below the safety threshold. Between-group
difference at T6 was highly significant (p<0.001).

 Timed Up and Go: TUG times decreased (improved)
in the NIE group from 12.8±2.1 seconds to 9.2±1.6
seconds (-28.1%), while the CTL group showed
smaller reductions from 12.5±2.3 to 11.3±2.0 seconds
(-9.6%) (p<0.001).

 Composite Fall Risk Score: A composite fall risk score
(derived from multiple assessments, range 0-100,
higher = greater risk) decreased by 45.7% in the NIE
group (from 68.5±12.3 to 37.2±9.8) versus 15.4% in
the CTL group (from 67.2±13.1 to 56.8±11.5)
(p<0.001).

Figure 4. Changes in clinical fall risk assessments. (a) Berg Balance Scale
scores improved substantially in the NIE group, crossing the safety threshold
of 54 points. (b) Timed Up and Go test times decreased (improved) more in
the NIE group. (c) Composite fall risk scores showed dramatic reductions in
the NIE group. *p<0.001 for all comparisons.

4.4. Metabolic Cost Reduction
Figure 5 shows metabolic cost outcomes. Oxygen

consumption during the 6-minute walk test decreased
significantly in the NIE group from 11.2±1.8 ml/kg/min at
baseline to 9.3±1.5 ml/kg/min at T6 (-17.0%), compared to a
smaller reduction in the CTL group (11.0±1.9 to 10.2±1.7
ml/kg/min, -7.3%) (p=0.002). Similarly, the metabolic cost of
transport (MCoT) decreased by 19.6% in the NIE group
versus 7.4% in the CTL group (p<0.001), indicating improved
walking economy.
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Figure 5. Metabolic cost outcomes at baseline and post-training. (a)
Oxygen consumption during 6-minute walk test decreased more in the NIE
group. (b) Metabolic cost of transport showed greater reductions in the NIE
group. *p<0.01 for group × time interaction.

4.5. Fall Prediction Performance
The XGBoost-based fall prediction model was trained on

data from the first three weeks and validated on weeks 4-6.
The model achieved an overall accuracy of 89.6%, sensitivity
of 87.3%, specificity of 91.2%, and AUC of 0.94. The average
prediction lead time—the interval between risk alert and
actual instability event—was 1.2±0.4 seconds, providing
sufficient time for the system to initiate protective
interventions. Feature importance analysis revealed that step
width CV, gait cycle CV, EMG amplitude asymmetry, and
IMU-derived trunk sway were the top predictors (Table 2).

TABLE II. FALL PREDICTION MODEL PERFORMANCE

Metric Value
Accuracy 89.6%
Sensitivity 87.3%
Specificity 91.2%
AUC 0.94
Average lead time 1.2 ± 0.4 seconds

4.6. User Experience
Figure 6 summarizes user experience outcomes for the

NIE group. (a) The mean SUS score was 78.3±8.9, indicating
"good" usability (scores >68 are considered above average).
(b) Comfort ratings on a 0-10 scale improved from 6.5±1.2 at
the start of training to 8.1±0.9 at the end (p<0.001), reflecting

successful adaptation. (c) When asked about willingness to
continue using the system, 89% (n=10) responded "Yes," 8%
(n=1) "Unsure," and 3% (n=1) "No." Qualitative feedback
from interviews highlighted themes of "feeling safer," "more
confident walking," "easy to use after initial learning," and
"would recommend to friends."

Figure 6. User experience outcomes for the NIE group. (a) Distribution of
System Usability Scale scores showing good usability. (b) Comfort ratings
improved significantly from pre- to post-training. (c) High proportion of
participants willing to continue using the system.

5. DISCUSSION

This study successfully designed, developed, and
validated a neuro-adaptive intelligent exoskeleton (NIE)
system for older adults, aimed at improving gait stability and
actively preventing falls through human-robot collaboration.
The results powerfully demonstrate that compared to
traditional balance and strength training, six weeks of NIE
system-assisted training can more effectively enhance gait
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quality, reduce fall risk, and achieve good user acceptance
among older participants. This discussion will provide an in-
depth analysis of the study's core findings, comparisons with
existing research, potential mechanisms, the value of design
innovation, study limitations, and future prospects.

The most significant finding of this study is the NIE
system's outstanding effectiveness in improving gait stability.
Gait variability, particularly step width variability, is widely
recognized as a key biomechanical marker for assessing gait
stability and predicting fall risk. Our data show that the NIE
group's step width variability decreased significantly by
32.4% after training, while the control group showed only
insignificant slight improvement. This indicates that the NIE
system does not simply provide power assistance, but
effectively helps users optimize their intrinsic gait control
strategies through real-time neural feedback and adaptive
adjustment, making their walking patterns more stable and
repeatable. The significant increase in gait speed (26.5%) also
reflects comprehensive improvement in walking ability,
which not only means higher mobility efficiency but is also
associated with better health status and lower mortality rates.

In terms of fall risk, clinical assessment scales (BBS, TUG)
and composite risk scores all showed that the NIE group
achieved improvements far exceeding the control group.
Particularly noteworthy is that the NIE group's average BBS
score reached 58.1 points after training, surpassing the 54-
point threshold that distinguishes healthy older adults from
those at fall risk, marking that participants' balance ability has
been restored to near-normal levels. More innovative is our
integrated fall prediction module. The module's 89.6%
prediction accuracy and average 1.2-second advance warning
time demonstrate the potential for a paradigm shift from
"passive protection" to "active prevention." This proactive
intervention capability is not possessed by traditional
rehabilitation methods or passive protective devices; it can
intervene before potential danger occurs, greatly enhancing
users' sense of security.

Additionally, the results reveal the NIE system's
advantages in multi-scenario adaptation and metabolic
efficiency. Whether on level ground, slopes, or obstacle
environments, the system maintained stable assistive effects,
proving the robustness of its control algorithm. The reduction
in metabolic cost (-19.4%) means users can walk in a more
energy-efficient manner, which is significant for extending
older adults' activity time and range, encouraging their
participation in social activities.

From an engineering perspective, the present findings
indicate that combining tri-modal sensing with neuro-adaptive
gain modulation can improve assistance specificity under the
noisy and heterogeneous gait patterns typical of older adults.
The EMG–IMU–pressure fusion provides complementary
information for detecting emerging instability, allowing the
controller to respond in a timely manner without overriding
voluntary motor effort. This supports the feasibility of
proactive fall-risk-aware exoskeleton rehabilitation in
controlled clinical settings.

Several limitations should be acknowledged. First, the
sample size was modest and derived from community-
dwelling older adults with specific inclusion criteria; therefore,
generalization to frailer populations or to neurological
conditions requires further trials with broader recruitment.
Second, although the prediction model performed robustly on

RCT-derived data, its performance in unstructured outdoor
environments was not examined, and future work should
validate real-world robustness under varied terrains and
perturbations. Third, multimodal wearable sensing is
susceptible to long-term drift and placement variability;
standardized donning procedures and adaptive recalibration
may further improve stability of real-time inference. Finally,
assistance mapping relied on a bounded gain-scheduling
strategy; while adequate for the current RCT, future clinical
studies may explore individualized policies that remain
interpretable and safe for older users.

Despite these limitations, the proposed NIE system
provides evidence that neuro-adaptive, fall-risk-informed
closed-loop assistance can yield measurable improvements in
gait stability, balance, and walking economy compared with
conventional rehabilitation. These results motivate larger-
scale longitudinal trials and deployment studies to evaluate
sustained benefits and real-world fall-prevention potential.

6. CONCLUSION

This study presents a neuro-adaptive intelligent
exoskeleton (NIE) designed for older adults to enhance gait
stability and proactively mitigate fall risk through human–
robot collaboration. By integrating tri-modal sensing (surface
EMG, IMU, and plantar-pressure signals), a real-time fall-risk
prediction pipeline, and a neuro-adaptive closed-loop
assistance strategy, the NIE system provides individualized
support that responds to users’ neuromuscular and
biomechanical states during walking.

Experimental evidence from a six-week randomized
controlled trial demonstrates that NIE-assisted training yields
superior rehabilitation outcomes compared with conventional
balance and strength training. Participants using NIE
exhibited significant reductions in gait variability—
particularly step-width variability—along with increased gait
speed and marked improvements in standard clinical balance
measures. In parallel, the multimodal XGBoost-based fall-risk
model achieved robust performance on experimentally
collected data and provided early warning prior to instability
events, enabling timely adaptive assistance within safe
mechanical and control limits. Importantly, high usability
scores and positive user feedback indicate that the system is
acceptable and feasible for repeated use among community-
dwelling older adults.

From an engineering standpoint, these results support the
effectiveness of combining multi-source physiological and
kinematic sensing with risk-aware neuro-adaptive control to
address the heterogeneity and noise inherent in older-adult
gait. Clinically, the findings suggest that proactive, fall-risk-
informed assistance can extend rehabilitation benefits beyond
strength enhancement toward stability restoration and
confidence rebuilding.

Several limitations remain. The sample size was modest
and recruitment was limited to a single center, and the
intervention and follow-up durations were relatively short.
Moreover, system performance was verified under controlled
laboratory and training conditions; real-world deployment in
unconstrained community environments will require
additional validation with broader populations and longer
observation windows.

Overall, the NIE framework provides a reproducible
engineering pathway for fall-risk-aware exoskeleton
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rehabilitation and establishes a solid experimental basis for
future multi-center longitudinal trials. Continued development
should focus on improving robustness to long-term sensor
drift and donning variability, extending validation to real-
world terrains and daily-living tasks, and optimizing cost and
manufacturability for scalable clinical translation.
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