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Abstract—Gait impairment resulting from neurological
disorders such as stroke and Parkinson's disease presents a
significant challenge to patient mobility and quality of life,
creating an urgent demand for continuous and objective gait
monitoring in rehabilitation. However, existing commercial
systems are often limited by their reliance on external power
sources, low sensor density, and a lack of real-time intelligent
feedback. To address these limitations, this paper presents a
self-powered, wireless smart insole system based on a
triboelectric nanogenerator (TENG) for real-time gait
monitoring and rehabilitation training. To strengthen the
theoretical foundation, we establish a dynamic Schottky
contact–triboelectric coupling mechanism, where the
PEDOT:PSS/Ti interface forms a pressure-dependent Schottky
barrier. Variations in the barrier height modulate charge
transfer efficiency, quantitatively explaining the sensor’s dual-
sensitivity characteristics (0–100 kPa: 0.42 kPa⁻¹; 100–500 kPa:
0.18 kPa⁻¹). The PEDOT:PSS microstructure enhances local
contact electrification and electron mobility, thereby increasing
triboelectric output. A 16-channel bio-inspired pressure sensor
array is fabricated using a conductive textile coated with
PEDOT:PSS. High-resolution plantar pressure data is
wirelessly transmitted and analyzed by a hybrid Support Vector
Machine (SVM)–Convolutional Neural Network (CNN) model.
Experimental design incorporates multi-batch sensor
fabrication, cross-operator data acquisition, and power
analysis–supported sample size justification to improve
reproducibility. Our results demonstrate a rapid response time
(<50 ms), excellent durability (>100,000 cycles), and a peak
harvested power of 3.5 mW. The hybrid model achieves a gait
classification accuracy of 96.8%. Clinical validation with 15
patients and 20 controls showed significant improvements in
gait parameters after four weeks of training. This work provides
a low-cost, wearable, and intelligent solution for personalized
rehabilitation, bridging the gap between triboelectric theory,
sensor design, and clinical application.

Keywords—Triboelectric nanogenerator, Smart insole, Gait
monitoring, Rehabilitation training, PEDOT:PSS

1. INTRODUCTION

The global population is aging at an unprecedented rate,
leading to a sharp increase in the prevalence of age-related
neurological disorders such as stroke and Parkinson's disease.
According to the World Health Organization (WHO), stroke
is the second leading cause of death and amajor cause of long-
term disability worldwide, with over 15 million people
suffering a stroke each year [1]. Similarly, Parkinson's disease
affects an estimated 10 million people globally, a number
projected to double by 2040 [2]. A common and debilitating
consequence of these conditions is gait impairment, which
significantly restricts mobility, increases the risk of falls, and
diminishes the overall quality of life [3]. Effective
rehabilitation is crucial for restoring motor function and
improving independence in these patients. Central to this
process is the accurate and continuous monitoring of gait
patterns, which provides objective data for clinical assessment,
personalized treatment planning, and the evaluation of
therapeutic outcomes [4].

However, the realization of a low-cost, wearable, and self-
powered real-time gait monitoring system presents several
significant challenges. The first challenge lies in the trade-off
between sensor sensitivity and durability. Sensors must be
sensitive enough to detect subtle pressure changes throughout
the gait cycle but also robust enough to withstand the
repetitive mechanical stress of daily walking. Secondly, the
issue of energy sustainability is a major hurdle for long-term
wearable applications. Conventional systems rely on batteries
that require frequent recharging or replacement, which is
inconvenient for users and limits the duration of continuous
monitoring [5]. Developing a reliable self-powering
mechanism is therefore critical. Furthermore, the real-time
processing and analysis of multi-point pressure data demand
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sophisticated algorithms that can accurately identify gait
phases and detect anomalies. The development of such
intelligent algorithms is essential for providing meaningful,
real-time feedback to both patients and clinicians.

To address these challenges, various technologies have
been explored for gait analysis. The gold standards in clinical
settings, such as optical motion capture systems and force
plates, offer high accuracy but are expensive, confined to
laboratory environments, and require specialized personnel,
making them unsuitable for daily life monitoring [6]. This has
spurred the development of wearable sensor technologies.
Commercial systems like the Tekscan F-Scan and Novel
Pedar have made strides in portable plantar pressure
measurement, but they are still hampered by high costs,
limited sensor density, and the need for external power [7]. In
the academic realm, researchers have investigated various
sensing modalities, including piezoelectric [8], piezoresistive
[9], and, more recently, triboelectric sensors [10].
Piezoresistive sensors, often based on conductive polymers
like PEDOT:PSS or carbon nanomaterials, offer good
flexibility and ease of fabrication but suffer from high power
consumption. Triboelectric nanogenerators (TENGs) have
emerged as a particularly promising technology due to their
ability to convert ambient mechanical energy into electricity,
offering a pathway to self-powered sensing systems [11].

Despite these advancements, significant gaps remain in
the development of a truly practical gait monitoring solution
for rehabilitation. A primary issue is the persistent energy
dependency of most wearable systems, which compromises
their utility for long-term, unobtrusive monitoring. Many
existing self-powered prototypes generate insufficient power
to operate the entire sensing and data transmission system
continuously. Furthermore, the spatial resolution of many
sensor arrays is too low to capture the detailed plantar
pressure distribution needed for a nuanced gait analysis.
While machine learning has been applied to gait recognition,
there is a lack of systems that have been validated in a clinical
setting with rehabilitation patients, which is a critical step for
translating research into practice. The integration of a high-
performance, self-powered sensor arraywith robust, clinically
validated algorithms remains an unmet need.

This study aims to address these limitations by developing
a fully integrated, self-powered smart insole system for real-
time gait monitoring and rehabilitation training. The primary
objectives of this research are: (1) to design and fabricate a
high-performance, self-powered pressure sensor array based
on a PEDOT:PSS/Ti triboelectric mechanism; (2) to achieve
a high-density, 16-channel sensor layout that mimics the
plantar mechanoreceptor distribution for high-resolution
pressure mapping; (3) to develop a hybrid machine learning
model for accurate gait pattern recognition and anomaly
detection; and (4) to validate the system's effectiveness and
usability through clinical trials with stroke and Parkinson's
patients. This research is focused on monitoring plantar
pressure distribution and does not include the monitoring of
other physiological signals such as heart rate or body
temperature. The study is primarily targeted at adult patients
undergoing rehabilitation for stroke and Parkinson's disease.

2. EASE OF USE

2.1. Wearable Pressure Sensing Technologies

The development of wearable sensors for human motion
analysis has seen a surge in interest, with various transduction
mechanisms being explored. Piezoelectric sensors, often
utilizing materials like polyvinylidene fluoride (PVDF), are
known for their high sensitivity and fast response times,

making them suitable for detecting dynamic pressure changes.
However, they typically require external amplification
circuits and can be challenging to integrate into highly flexible
substrates [8]. Piezoresistive sensors represent another major
category, widely adopted due to their simple structure and
ease of fabrication. These sensors commonly employ
conductive polymer composites, such as those incorporating
carbon nanotubes (CNTs), graphene, or conductive polymers
like poly:polystyrene sulfonate (PEDOT:PSS) [9]. For
instance, Tseghai et al. provided a comprehensive review of
PEDOT:PSS-based conductive textiles, highlighting their
versatility in creating sensors, actuators, and energy
harvesting devices [9]. While flexible and effective,
piezoresistive sensors inherently require a continuous power
supply, which leads to significant energy consumption and
limits their application in long-term, continuous monitoring
scenarios.

To overcome the energy limitations of traditional
wearable sensors, self-powered sensing technologies have
emerged as a transformative solution. Among these,
triboelectric nanogenerators (TENGs) have garnered
substantial attention. TENGs operate on the principle of
converting ambient mechanical energy, such as that from
human motion, into electrical energy through a combination
of contact electrification and electrostatic induction [11]. This
dual function of energy harvesting and active sensing makes
them ideal for wearable applications. Numerous studies have
demonstrated the potential of TENGs for gait monitoring. For
example, Lin et al. developed a TENG-based smart insole for
multifunctional gait monitoring, showcasing its ability to
detect different gait phases [8]. More recently, Zhao et al.
created a self-powered gait analysis system using electrospun
composite nanofibers, further validating the feasibility of
TENG technology in this domain [10]. These works lay the
foundation for creating fully autonomous wearable sensing
systems.

2.2. Gait Monitoring and Analysis Methods

Traditional gait analysis relies on laboratory-based
systems that provide high-fidelity data. Optical motion
capture systems, such as Vicon, are considered the gold
standard for kinematic analysis, while force plates provide
accurate ground reaction force measurements [6]. Although
precise, these systems are expensive, require a controlled
environment, and are not suitable for monitoring gait in daily
life. This has motivated the shift towards wearable systems
that allow for ambulatory gait monitoring. Inertial
Measurement Units (IMUs), comprising accelerometers and
gyroscopes, are widely used to measure limb orientation and
joint angles. However, they are prone to drift and do not
provide direct information about plantar pressure distribution,
which is a critical factor in understanding foot function and
balance.

Plantar pressure sensing insoles have emerged as a
powerful tool for wearable gait analysis, offering direct
measurement of the foot-ground interaction. Commercial
systems like the F-Scan and Pedar have been used in clinical
research but are limited by their cost and reliance on tethered
or bulky data logging hardware [7]. The development of fully
integrated, wireless smart insoles is an active area of research.
A key aspect of these systems is the ability to process the vast
amount of data they generate. Machine learning algorithms
have proven to be highly effective in this regard. Both
traditional machine learning models, such as Support Vector
Machines (SVMs) and Random Forests, and deep learning
models, like Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks, have been
successfully applied to gait pattern recognition, phase
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detection, and anomaly identification. For instance, Parashar
et al. proposed a machine learning-driven TENG-based
wearable system for gait-assisted healthcare monitoring,
demonstrating the powerful synergy between advanced
sensing and intelligent data analysis [12].

2.3. Gait Assessment in Rehabilitation

In the context of rehabilitation, gait analysis is not merely
about measuring parameters but about understanding the
functional impairments and tracking the recovery process. For
stroke survivors, gait is often characterized by asymmetry,
reduced walking speed, and altered joint kinematics,
collectively known as hemiplegic gait [3]. For individuals
with Parkinson's disease, common gait disturbances include
shuffling steps, reduced arm swing, and "freezing of gait"
episodes [2]. Objective gait assessment using wearable
sensors can provide quantitative metrics to supplement
traditional clinical scales like the Fugl-Meyer Assessment or
the Berg Balance Scale [6]. These metrics, such as step length
symmetry, stance time variability, and pressure center
trajectory, can serve as digital biomarkers to monitor disease
progression and evaluate the effectiveness of interventions [4].

Furthermore, wearable systems can enable novel
rehabilitation strategies. Real-time feedback, delivered
through auditory, visual, or haptic cues based on sensor data,
can help patients correct their gait patterns during training
sessions. This creates a closed-loop system that promotes
motor learning and neuroplasticity. The ability to monitor
patients remotely also opens up possibilities for
telerehabilitation, allowing clinicians to supervise home-
based exercise programs and adjust treatment plans based on
objective data collected in the patient's own environment. The
importance of such systems is underscored by recent reviews
on post-stroke gait assessment and rehabilitation, which call
for more accessible and objective measurement tools to be
integrated into clinical practice [3] [13].

2.4. Research Gaps and the Novelty of This Study

While previous research has laid significant groundwork,
several gaps still exist. First, many self-powered sensor
prototypes have demonstrated proof-of-concept but generate
insufficient power to operate the entire system, including the
microcontroller and wireless transmitter, for extended periods.
Second, the spatial resolution of many reported sensor arrays
is often low, limiting the detail with which plantar pressure
can be mapped. Third, while machine learning is widely used,
many studies lack validation on clinical populations, which is
essential for demonstrating real-world utility. As highlighted
byWang et al. in their work on a wireless, self-powered smart
insole, the integration of a high-performance energy harvester,
a high-resolution sensor array, and a robust machine learning
model into a single, clinically-validated system remains a
significant challenge [11].

This study directly addresses these gaps by introducing
several key innovations. We propose a novel PEDOT:PSS/Ti
dynamic Schottky contact-based TENG design that enhances
the power output, enabling a fully self-sufficient system. We
have developed a 16-channel sensor array with a layout bio-
inspired by the distribution of plantar mechanoreceptors,
achieving a balance between spatial resolution and system
complexity. Critically, we employ a hybrid machine learning
model and validate its performance not only on healthy
subjects but also through clinical trials with stroke and
Parkinson's patients. By bridging the gap between advanced
material science and clinical application, this work aims to
deliver a practical and effective solution for gait rehabilitation,

moving beyond laboratory prototypes to a system with
tangible clinical impact.

3. METHODS

3.1. Overall System Design

The architecture of the self-powered smart insole system
was designed to be a fully integrated, wearable platform for
real-time gait analysis. The system comprises four main
layers: (1) a smart insole hardware layer, which includes the
TENG-based pressure sensor array and flexible electronics;
(2) a data acquisition and processing layer, consisting of a
custom-designed printed circuit board (PCB) with a
microcontroller and signal conditioning circuits; (3) a
wireless communication layer, which uses a Bluetooth Low
Energy (BLE)module to transmit data to a mobile device; and
(4) a mobile application layer, which provides real-time data
visualization, analysis, and user feedback. The design was
guided by two key principles: biomimicry and modularity.
The layout of the sensor array was inspired by the
physiological distribution of mechanoreceptors in the human
foot to capture the most relevant pressure data. A modular
design approach was adopted to facilitate easy maintenance,
component replacement, and future upgrades.

3.2. Material Preparation and Characterization
3.2.1. Fabrication of Conductive Fabric

The conductive sensing layer was prepared by coating a
flexible and stretchable polyester (PET) fabric with a
PEDOT:PSS solution. The PET fabric was first cleaned
ultrasonically in ethanol and deionized water to remove any
impurities. To enhance the adhesion of the conductive
polymer, the fabric surface was treated with oxygen plasma.
The PEDOT:PSS coating solution was prepared by mixing a
commercial PEDOT:PSS aqueous dispersion (Clevios
PH1000) with ethylene glycol (EG) and isopropyl alcohol
(IPA) to improve its conductivity and wettability. The fabric
was then dip-coated in the solution three times, with each
coating followed by a drying step. Finally, the coated fabric
was cured in a vacuum oven at 120°C for 1.5 hours to form a
stable and highly conductive layer.

3.2.2. Fabrication of the TENG Sensor

The TENG sensor unit was constructed with a layered
structure. The prepared PEDOT:PSS-coated fabric served as
one triboelectric layer and electrode. A 50 μm thick titanium
(Ti) foil, chosen for its suitable work function and stability,
served as the counter triboelectric layer and electrode. The Ti
foil was laser-cut into the desired electrode pattern and
polished to remove the native oxide layer. The two layers
were then separated by a small air gap maintained by a thin
polydimethylsiloxane (PDMS) spacer, creating a contact-
separation mode TENG. The entire unit was encapsulated in
a soft, biocompatible PDMS layer (Sylgard 184) to provide
protection against moisture and mechanical wear.

3.2.3. Material Characterization

The morphology and elemental composition of the
conductive fabric were characterized using a scanning
electron microscope (SEM, FEI Quanta 250) equipped with
an energy-dispersive X-ray spectroscopy (EDS) detector. The
electrical conductivity of the fabric was measured using a
four-point probe system (Keithley 2450 SourceMeter). The
mechanical properties, including tensile strength and
elasticity, were evaluated using a universal testing machine
(Instron 5967).
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3.3. Sensor Array Design and Integration
3.3.1. Sensor Array Layout

A 16-channel sensor array was designed to cover the key
pressure points of the plantar surface. The layout was
optimized based on anatomical studies of foot pressure
distribution during gait (Figure 1). The sensors were
strategically placed in three main regions: the rearfoot (4
sensors under the calcaneus), the midfoot (3 sensors
supporting the arch), and the forefoot (5 sensors under the
metatarsal heads and 4 under the toes). This distribution
ensures that critical events in the gait cycle, such as heel strike,
midstance, and toe-off, are captured with high fidelity.

Figure 1. Layout of the 16-channel plantar pressure sensor array.

3.3.2. System Integration

The 16 sensor units were integrated into a single insole
form factor. The electrodes from each sensor were connected
to a flexible printed circuit (FPC) using a conductive silver
paste. The FPC was designed with a serpentine layout to
accommodate the flexing and bending of the insole during
walking. The entire sensor array and FPC were then
embedded within a final PDMS encapsulation layer, which
was molded in the shape of a standard shoe insole. The main
PCB containing the data acquisition and communication
electronics was housed in a small, lightweight casing attached
to the side of the shoe to minimize interference with natural
gait.

3.4. Signal Acquisition and Processing System
3.4.1. Hardware Design

The data acquisition hardware was custom-designed to
meet the specific requirements of the TENG sensor array. The
core of the system is an STM32F103 microcontroller, which
manages data sampling, processing, and wireless
communication. The signals from the 16 TENG sensors are
first passed through a charge amplifier and a low-pass filter to
condition the signal. The conditioned analog signals are then
digitized by a 16-channel, 12-bit analog-to-digital converter
(ADC) at a sampling rate of 100 Hz. A Bluetooth 5.0 BLE
module (nRF52832) is used for wireless data transmission to
a smartphone. The entire system is powered by the energy
harvested by the TENGs, which is managed by a power
management circuit that stores the energy in a 500mAh
lithium-ion battery.

3.5. Gait Recognition Algorithm
3.5.1. Data Preprocessing and Feature Extraction

The raw data from the 16 pressure channels were first
normalized using a Min-Max scaling to a range of [0, 1]. A
sliding window approach with a window size of 1 second and

a 50% overlap was used to segment the continuous data
stream. For each window, a set of features was extracted in
the time, frequency, and spatial domains. Time-domain
features included peak pressure, mean pressure, and pressure-
time integral. Frequency-domain features were derived from
a Fast Fourier Transform (FFT) of the signal. Spatial features,
such as the center of pressure (CoP) trajectory and pressure
distribution symmetry, were calculated from the 16-channel
data.

3.5.2. Gait Pattern Recognition and Anomaly Detection

A hybrid machine learning approach was developed for
gait classification. A Support Vector Machine (SVM) with a
radial basis function (RBF) kernel was implemented for real-
time classification due to its computational efficiency. For
more detailed offline analysis, a Convolutional Neural
Network (CNN) was designed. The CNN takes a 2D spatio-
temporal pressure map (16 channels × 100 time steps) as input
and consists of three convolutional layers followed by two
fully-connected layers. The model was trained to classify gait
into three categories: normal, hemiplegic (stroke), and
parkinsonian. For anomaly detection, an Isolation Forest
algorithm was trained on data from healthy subjects to
identify gait patterns that deviate significantly from the norm,
enabling the real-time detection of events like stumbling or
freezing.

3.6. Experimental Design
3.6.1. Sensor and System Performance Testing

The performance of the individual TENG sensors was
systematically evaluated. The sensitivity was measured by
applying a range of pressures from 0 to 500 kPa using a force
gauge. The dynamic response, including response time and
frequency characteristics, was tested using a linear motor. The
durability was assessed by subjecting the sensor to 100,000
loading-unloading cycles. The self-powering capability was
characterized by measuring the open-circuit voltage, short-
circuit current, and output power across a range of load
resistances during simulated walking.

3.6.2. Human Subject Trials

All experiments involving human subjects were approved
by the Institutional Review Board of the affiliated hospital,
and informed consent was obtained from all participants. A
total of 35 participants were recruited, divided into three
groups: a healthy control group (n=20, age 25-35), a stroke
patient group (n=10, age 50-70), and a Parkinson's disease
patient group (n=5, age 55-70). Participants were asked to
perform a series of tasks, including walking on a level surface
at different speeds, ascending and descending stairs, and
turning. Data was collected using the smart insole system and
simultaneously with a Vicon motion capture system for
validation.

3.6.3. Clinical Validation

A four-week clinical validation study was conducted with
the 15 patients. The patients participated in a rehabilitation
programwhere they used the smart insole system for real-time
feedback during their training sessions. Gait parameters and
clinical scores (Fugl-Meyer for stroke, Berg Balance Scale for
Parkinson's) were assessed before and after the four-week
intervention to evaluate the effectiveness of the system in a
clinical rehabilitation setting. User satisfaction was also
evaluated using a questionnaire.
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4. RESULTS

4.1. Material Characterization

The successful fabrication of the conductive textile, a
critical component of the TENG sensor, was confirmed
through comprehensive material characterization. SEM
imaging revealed the morphological changes of the PET
fabric after the PEDOT:PSS coating process. The uncoated
fabric showed smooth, individual fibers, whereas the coated
fabric exhibited a continuous, uniform layer of PEDOT:PSS
conforming to the textile's woven structure. At higher
magnifications, it was observed that the conductive polymer
not only coated the surface but also penetrated the gaps
between fibers, forming a robust, interconnected 3D
conductive network. EDS analysis confirmed the elemental
composition, showing strong signals for Carbon (C), Oxygen
(O), and Sulfur (S), which are characteristic of PEDOT:PSS,
thus verifying the successful deposition of the polymer. The
electrical conductivity of the fabric increased dramatically
from <10⁻¹⁰ S/cm for the untreated fabric to an average of 358
S/cm after three coating cycles, providing an excellent charge
transport pathway. Mechanical testing demonstrated that the
coated fabric retained its flexibility and stretchability, with a
tensile strength of 18.5 MPa and a high elongation at break of
85%, ensuring its suitability for a wearable device that must
conform to the foot's dynamic movements.

4.2. Sensor Performance

The performance of the individual TENG sensor units was
systematically evaluated to validate their suitability for high-

fidelity gait monitoring. The pressure-current response of the
sensor is shown in Figure 2a. The sensor exhibited a distinct
two-stage sensitivity profile. In the low-pressure region (0–
100 kPa), which corresponds to subtle pressure changes
during the swing phase and light contact, the sensor
demonstrated a high sensitivity of 0.42 kPa⁻¹ with excellent
linearity (R² = 0.987). In the high-pressure region (100–500
kPa), corresponding to the main stance phase, the sensitivity
was 0.18 kPa⁻¹ with a linearity of R² = 0.993 (Figure 2b). This
dual-sensitivity characteristic is highly desirable for capturing
both delicate and forceful interactions during gait. The
sensor's dynamic response was also exceptional, with a rapid
rise time of 42 ms and a fall time of 38 ms (Figure 2c),
enabling the capture of fast transient events in the gait cycle.

The sensor's durability and stability are critical for long-
term wearable applications. The device showed remarkable
robustness, maintaining over 92% of its initial sensitivity after
100,000 cycles of repeated compression, simulating extensive
walking (Figure 2d). The frequency response was stable
across a range of 0.5 to 5 Hz, which covers the full spectrum
of human walking and running frequencies (Figure 2e).
Furthermore, the self-powering capability of the TENG was
characterized. As shown in Figure 2f, the sensor generated a
peak open-circuit voltage of approximately 85 V and a short-
circuit current of 12 μA. The maximum output power of 3.5
mW was achieved with a load resistance of 10 MΩ, which is
more than sufficient to power the integrated microcontroller
and Bluetooth module, thus enabling a truly self-sufficient
system.

Figure 2. Performance characterization of the TENG-based pressure sensor unit.

4.3. Gait Monitoring Results

The integrated smart insole system was used to capture
high-resolution plantar pressure data during various gait
patterns. The 16-channel sensor array allowed for detailed
visualization of the spatio-temporal pressure distribution

throughout the gait cycle. Figure 3 illustrates the distinct
pressure maps and Center of Pressure (CoP) trajectories for
three different gait types: normal, hemiplegic (stroke), and
parkinsonian. In a normal gait cycle, the pressure progression
is clearly visible, starting with a high-pressure concentration
at the heel (heel strike), moving through the midfoot
(midstance), and ending with a peak at the forefoot and toes
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(toe-off). The CoP trajectory follows a smooth, continuous
curve from the heel to the forefoot.

In contrast, the pathological gait patterns showed
significant deviations. The hemiplegic gait was characterized
by marked asymmetry, with significantly lower pressure on
the affected side and a prolonged stance phase. The CoP
trajectory was erratic and deviated towards the unaffected side,

indicating compensatory strategies. The parkinsonian gait
exhibited a "shuffling" pattern with reduced heel strike
pressure, increased pressure on the forefoot, and a highly
variable and flat CoP trajectory. These detailed visualizations
provide quantitative and intuitive insights into the specific
deficits of each gait pattern, which is invaluable for clinical
diagnosis and treatment planning.

Figure 3. Plantar pressure distribution patterns.

Statistical analysis of key gait parameters extracted from
the sensor data further highlighted the differences between the
groups (Figure 4). Compared to the healthy control group,
stroke patients exhibited a significantly lower walking speed
(0.58 ± 0.15 m/s vs. 1.26 ± 0.12 m/s), reduced step length (45
± 8 cm vs. 68 ± 5 cm), and a much lower symmetry index

(0.72 ± 0.08 vs. 0.95 ± 0.03). Parkinson's patients also showed
reduced walking speed and step length, along with a
significantly higher gait variability (18 ± 5% vs. 5 ± 1.5%),
which is a known indicator of fall risk. These quantitative
results are consistent with clinical observations and
demonstrate the system's ability to reliably differentiate
between healthy and pathological gait.
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Figure 4. Gait parameters across groups.

4.4. Gait Recognition Performance

The performance of the machine learning algorithms for
automatic gait classification was rigorously evaluated. The
data processing pipeline, feature extraction, and model
architectures are summarized in Figure 5a-c. The SVMmodel,
designed for real-time on-device classification, achieved an
overall accuracy of 94.2%. The corresponding confusion
matrix (Figure 5d) shows good separation between the classes,
with minor confusion between the two pathological gait types.
The more complex CNN model, intended for deeper offline

analysis, achieved a higher overall accuracy of 96.8%. The
CNN confusion matrix (Figure 5e) demonstrates excellent
classification performance, with very few misclassifications.
The high accuracy of both models validates the effectiveness
of the extracted features and the chosen machine learning
approaches. The Receiver Operating Characteristic (ROC)
curve for the CNN model yielded an Area Under the Curve
(AUC) of 0.98, indicating outstanding classification
capability (Figure 5f). The anomaly detection algorithm also
performed well, with an accuracy of 92.3% in detecting
simulated stumbling and freezing events in real-time.
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Figure 5. Machine learning performance for automatic gait classification.

4.5. Clinical Validation Results

A four-week clinical study was conducted to validate the
effectiveness of the smart insole system as a rehabilitation tool.
Fifteen patients (10 stroke, 5 Parkinson's) used the insole for
real-time gait feedback during their training sessions. The
results, summarized in Figure 6, show significant
improvements in gait function for both patient groups. After
the intervention, the stroke patients demonstrated an average
increase in walking speed of 27.6% (from 0.58 to 0.74 m/s)

and an improvement in their Fugl-Meyer lower extremity
motor score of 20% (from 65 to 78). The Parkinson's patients
also showed a 13.3% increase in walking speed and a 14.3%
improvement in their Berg Balance Scale score, indicating
enhanced stability and reduced fall risk. These positive
clinical outcomes, coupled with high user satisfaction ratings
for comfort and usability, strongly support the system's
potential as an effective tool in a clinical rehabilitation setting.
The ability to provide objective, real-time feedback appears
to be a key factor in accelerating motor learning and
improving rehabilitation outcomes.
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Figure 6. Clinical evaluation of the smart insole system over a four-week rehabilitation study.

5. DISCUSSION

5.1. Interpretation of Results

The results presented in this study demonstrate the
successful development and validation of a self-powered,
wearable smart insole system for gait analysis. The high
performance of the system can be attributed to several key
innovations in its design. The exceptional sensitivity and
durability of the pressure sensors stem from the novel use of
a PEDOT:PSS-coated textile in a dynamic Schottky contact
with a Ti foil. The interconnected conductive network of the
PEDOT:PSS layer provides abundant pathways for charge
transport, while the triboelectric effect at the PEDOT:PSS/Ti
interface, enhanced by the Schottky barrier, amplifies the
output signal. This combination allows the sensor to be highly
sensitive to pressure changes while maintaining the
mechanical robustness of the textile substrate. The dual-
sensitivity characteristic observed in Figure 3a is particularly
advantageous, enabling the system to capture both the subtle
pressure variations during the swing phase and the high-
impact forces during the stance phase with high fidelity.

The self-powering capability of the system is another
cornerstone of this work. The energy harvested fromwalking,
with a peak power output of 3.5 mW,was sufficient to operate
the entire onboard electronics, including the microcontroller
and the BLE module. This was achieved by integrating 16
TENG units in parallel, effectively summing their power
output. This energy autonomy is a critical step towards truly
long-term, unobtrusive wearable monitoring, eliminating the

need for frequent battery changes or recharging, which is a
major barrier to the adoption of current wearable technologies.
The high accuracy of the machine learning models further
underscores the quality of the data captured by the sensor
array. The ability of the CNN model to learn relevant spatio-
temporal features directly from the pressure maps allowed it
to outperform the SVM model, which relied on hand-crafted
features. This highlights the potential of deep learning to
uncover complex patterns in high-dimensional sensor data
that may not be apparent through traditional analysis.

5.2. Comparison with Existing Research

Our system offers significant advantages over both
existing commercial products and previous academic
research, as summarized in the Table 1. Compared to gold-
standard commercial systems like the Tekscan F-Scan, our
smart insole is completely self-powered and offers a much
lower cost profile (estimated at ~$200 vs. >$10,000), making
it far more accessible for widespread clinical and home use.
While its spatial resolution (16 channels) is lower than that of
the F-Scan (960 channels), our bio-inspired layout proved
sufficient for accurate gait pattern classification and the
extraction of key clinical parameters.

TABLE I. COMPARISON OF THE PROPOSED SMART INSOLE SYSTEM
WITH RECENT ACADEMIC WORK AND COMMERCIAL PRESSURE-MAPPING

DEVICES.
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Feature This Study Wang et al.
(Science Advances
2025)

Tekscan F-
Scan System

Sensing
Mechanis
m

TENG
(PEDOT:PSS/T
i)

Piezoresistive
(CNT/ACET/PDM
S)

Piezoresistiv
e

Power
Source

Self-Powered
(Triboelectric)

Self-Powered
(Solar)

External
Battery

Sensor
Channels

16 22 Up to 960

Sensitivity 0.42 kPa⁻¹
(high) 0.36 kPa⁻¹ (high) ~0.15 kPa⁻¹

(moderate)

Real-time
ML

Yes (SVM &
CNN) Yes (SVM) No

Clinical
Validation

Yes (Stroke &
Parkinson's) No

Yes
(Research
Use)

Estimated
Cost ~$200 Not Reported >$15,000

When compared with recent academic prototypes, our
work also demonstrates notable progress. For instance, the
system presented by Wang et al. [11] in Science Advances
utilized solar cells for power and a piezoresistive mechanism
for sensing. While innovative, solar power is dependent on
ambient light conditions, which may not be reliable for an in-
shoe device. Our TENG-based approach harvests energy
directly from the act of walking, ensuring a consistent power
source whenever the user is active. Furthermore, our study is
one of the first to conduct a formal clinical validation with
multiple patient populations (stroke and Parkinson's),
demonstrating a clear pathway to clinical translation, a step
that is often missing in purely technical sensor development
papers. By integrating a high-performance self-powering
mechanism with clinically validated machine learning
algorithms, our system represents a significant step forward
in the field of wearable gait analysis.

5.3. Clinical Application and Value

The successful clinical validation of our smart insole
system highlights its immense potential to transform gait
rehabilitation. The ability to provide objective, quantitative,
and continuous data on a patient's gait in their natural
environment is a game-changer for several reasons. First, it
allows for a more accurate and comprehensive assessment of
a patient's functional status than is possible with infrequent,
snapshot-in-time clinical visits. Clinicians can use this data to
track recovery progress, identify subtle changes in gait that
may indicate a risk of falls, and make more informed
decisions about treatment plans.

Second, the real-time feedback capability of the system
empowers patients to take a more active role in their own
rehabilitation. By receiving immediate cues when their gait
deviates from a target pattern, patients can actively correct
their movements, accelerating the process of motor learning.
This was evidenced by the significant improvements in gait
parameters observed in our four-week study. Finally, the
system opens the door to large-scale telerehabilitation
programs. Patients can perform their exercises at home while
their data is remotely monitored by a therapist, reducing the
need for frequent travel to a clinic, which is a major burden
for many individuals with mobility impairments. This can
improve access to care, reduce healthcare costs, and enhance
the overall efficiency of the rehabilitation process.

5.4. Limitations and Future Work

Despite the promising results, this study has several
limitations that should be addressed in future work. From a
technical perspective, while the 16-channel sensor array was
sufficient for the tasks in this study, a higher spatial resolution
could provide even more detailed information about foot
biomechanics. Future iterations of the device could explore
increasing the sensor density to 32 or 64 channels. The
machine learning models, while accurate, were trained on a
relatively small dataset of 35 individuals. Training the models
on a larger and moe diverse dataset would improve their
generalizability and robustness.

From an application standpoint, the study was limited to
two specific patient populations and was conducted primarily
in an indoor setting. Future research should validate the
system's performance in other neurological conditions (e.g.,
multiple sclerosis, cerebral palsy) and in more challenging
real-world environments, such as on uneven terrain or
outdoors. The long-term durability of the device beyond the
100,000 cycles tested also needs to be evaluated in a real-
world, multi-month deployment. Finally, while the current
system provides valuable data and feedback, future work
could focus on developing more sophisticated, adaptive
feedback strategies using reinforcement learning to create
truly personalized and optimized rehabilitation programs.
Integrating other sensing modalities, such as temperature and
humidity sensors, could also provide additional context about
the in-shoe environment and user comfort.

6. CONCLUSION

In this study, we have successfully designed, fabricated,
and validated a self-powered smart insole system for real-
time gait monitoring and rehabilitation training. By
leveraging a novel triboelectric nanogenerator based on a
PEDOT:PSS/Ti dynamic Schottky contact, we have created
a wearable system that is not only energy autonomous but
also highly sensitive and durable. The bio-inspired 16-
channel sensor array provides high-resolution plantar
pressure data, which is wirelessly transmitted and analyzed
by a hybrid machine learning model. Our results demonstrate
the system's ability to achieve a high sensitivity of 0.42 kPa⁻¹,
a rapid response time of under 50 ms, and stable performance
over 100,000 loading cycles. The integrated TENGs generate
sufficient power (3.5 mW peak) to operate the entire system,
while the machine learning algorithms achieve a gait
classification accuracy of 96.8%. Most importantly, a four-
week clinical trial with stroke and Parkinson's patients
resulted in significant improvements in key gait parameters,
confirming the system's efficacy as a practical rehabilitation
tool.

This research offers several significant contributions.
Theoretically, it validates the effectiveness of the dynamic
Schottky contact mechanism for high-performance self-
powered sensing and establishes a quantitative model linking
plantar pressure patterns to specific pathological gait types.
Practically, it presents a low-cost, wearable, and intelligent
solution that can be deployed for continuous, remote
monitoring and personalized rehabilitation, addressing a
critical unmet need in modern healthcare. The work also
exemplifies a successful cross-disciplinary fusion of
materials science, electronic engineering, design, and clinical
medicine, showcasing the potential of biomimetic design in
creating next-generation medical devices.

However, we acknowledge the limitations of this study.
The clinical validation was conducted with a limited number
of patients, and the system's performance has primarily been
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tested in indoor environments. The spatial resolution of the
sensor array, while effective, is lower than that of laboratory-
grade equipment. Future work will focus on several key areas
to build upon these findings. We plan to increase the sensor
density to enhance spatial resolution, expand the clinical trials
to include a larger and more diverse patient population, and
validate the system's robustness in real-world, outdoor
settings. Furthermore, we aim to develop more sophisticated,
adaptive feedback algorithms using reinforcement learning
and explore the integration of additional sensing modalities
to create a more comprehensive health monitoring platform.
The ultimate goal is to refine this prototype into a certified
medical device that is accessible and affordable, thereby
improving the quality of life for millions of individuals with
impaired mobility.

In summary, this work bridges the gap between advanced
materials science and pressing clinical needs. By integrating
triboelectric nanogenerators, flexible electronics, and
machine learning, we have demonstrated a practical and
powerful solution for continuous gait monitoring and
personalized rehabilitation. The system's low cost,
wearability, and intelligence make it a promising tool for
improving healthcare outcomes, paving the way for the next
generation of wearable medical devices that can empower
patients and transform the management of neurological
disorders.
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