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Abstract—Digital interface evaluation in industrial design
practice still relies heavily on subjective questionnaires and
offline behavioral metrics, which lack objectivity, real-time
capability, and engineering scalability. This limitation poses a
critical engineering challenge for the development of automated,
data-driven interface evaluation systems. Traditional user
experience (UX) research relies heavily on behavioral metrics
and subjective feedback, which often fail to capture the
continuous and complex cognitive processes involved. To
address this gap, we introduce a novel framework that
integrates pre-trained deep learning vision models with
simultaneous electroencephalography (EEG) and eye-tracking.
We recorded high-density EEG and eye-tracking data from 32
participants as they performed both free-viewing and task-
oriented interactions with a diverse set of 20 real-world web and
mobile interfaces. By correlating neural activity with visual-
semantic features extracted by the Contrastive Language-Image
Pre-training (CLIP) model, we reveal a detailed neural map of
interface processing. Our findings demonstrate that neural
activity, particularly in the gamma frequency band, is
significantly correlated with hierarchical features encoded by
the CLIP model, reflecting the brain's processing of design
elements from basic visual attributes to high-level semantic
concepts. Furthermore, these neural patterns are dynamically
modulated by the user's attentional focus, as measured by eye-
tracking, and shift significantly during transitions between
browsing and decision-making phases. These results provide the
first direct neural evidence of how the human brain processes
complex digital interfaces in naturalistic settings and establish a
new, neuro-grounded paradigm for design evaluation. This
approach offers a scalable and objective method to deconstruct
the user experience, paving the way for neuro-adaptive
interfaces and data-driven design optimization.

Keywords—Design Neuroscience, Human-Computer
Interaction, Deep Learning Vision Models, EEG, Eye Tracking,
User Experience

1. INTRODUCTION

In the digital era, human interaction with the world is
increasingly mediated through digital interfaces. The design
of these interfaces—from websites and mobile applications to

complex software—is a critical determinant of usability,
efficiency, and overall user experience (UX) [1]. A well-
designed interface feels intuitive and effortless, while a poorly
designed one can lead to frustration, errors, and task
abandonment. Consequently, the field of Human-Computer
Interaction (HCI) has dedicated decades to developing
methods for evaluating and improving interface design. These
methods, however, have traditionally relied on behavioral
observations (e.g., click-through rates, task completion times)
and self-report measures (e.g., questionnaires, interviews) [2].
While valuable, these approaches provide a limited and often
retrospective view of the user's cognitive state, capturing the
outcome of cognitive processes but not the processes
themselves. However, from an engineering perspective,
current user experience (UX) evaluation methods suffer from
three critical limitations: (1) heavy reliance on subjective
questionnaires, (2) lack of objective, real-time indicators for
interface quality, and (3) absence of scalable evaluation tools
applicable during the design and optimization stages. These
limitations hinder the development of data-driven, automated
interface assessment systems. Therefore, a key engineering
problem remains unsolved: how to construct an objective,
system-level interface evaluation framework that can
quantitatively link interface visual features with measurable
user cognitive responses.

The human brain, in real-time, engages in a complex
cascade of neural computations to make sense of a visual
scene, direct attention, and execute actions. Understanding
these neural dynamics is the key to unlocking a deeper, more
fundamental understanding of user experience. The emerging
field of “Neurodesign” or “Neuro-UX” seeks to bridge this
gap by applying principles and methods from cognitive
neuroscience to design [3, 4]. Early work in this area has
demonstrated the potential of neurophysiological tools like
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) to measure cognitive load,
emotional engagement, and aesthetic preference in response
to design stimuli [5, 6]. Concurrently, eye-tracking has
become a staple in UX research, providing precise data on
users' visual attention patterns [7]. The integration of EEG and
eye-tracking has proven particularly powerful, allowing
researchers to link neural responses directly to specific
interface elements being viewed [8, 9].
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Despite this progress, a significant challenge remains:
how to model the complex visual information of a real-world
interface in a way that can be meaningfully related to neural
activity. Unlike the simple, controlled stimuli used in
traditional neuroscience experiments, a digital interface is a
dense, multi-layered composition of text, images, icons, and
interactive components. Recent advancements in artificial
intelligence, specifically in deep learning models for
computer vision, offer a powerful solution. Models like the
Contrastive Language-Image Pre-training (CLIP) and Vision
Transformers (ViT), trained on vast datasets of images and
text, have developed sophisticated, hierarchical
representations of the visual world that show a surprising
alignment with the processing hierarchy of the primate visual
system [10, 11]. These models can deconstruct a complex
visual scene into a rich set of feature embeddings, from low-
level edges and textures to high-level semantic concepts,
providing a quantitative vocabulary to describe the content of
an interface [12].

To date, however, few studies have combined these three
powerful methodologies—neurophysiological recording
(EEG), attentional tracking (eye-tracking), and deep learning
vision models—to investigate the neural basis of naturalistic,
unconstrained human-computer interaction. The neural
dynamics that unfold as a user freely explores a webpage,
shifts their attention, and makes a decision to click remain
largely a "black box." This study aims to the truth. We
hypothesize that the hierarchical representations learned by
deep learning vision models can serve as a proxy for the
brain's own visual processing, allowing us to map the neural
correlates of interface perception with unprecedented detail.

By recording simultaneous EEG and eye-tracking data
while participants interact with a diverse range of real-world
digital interfaces, we investigate several key questions:

 Can we find direct correlations between neural activity
and the visual-semantic features of an interface as
encoded by a state-of-the-art vision model (CLIP)?

 How are these neural representations of the interface
modulated by a user's visual attention?

 Do the neural dynamics differ between distinct phases
of interaction, such as passive browsing versus active,
goal-directed tasks?

Answering these questions will not only provide
fundamental insights into the cognitive neuroscience of
design but also lay the groundwork for a new generation of
objective, scalable, and neuro-informed tools for UX
evaluation and optimization. This study explicitly formulates
interface evaluation as a system identification and
performance assessment problem. We define neural–visual
alignment metrics (i.e., CLIP–EEG correlation strength,
spatial distribution, and task-modulated gain) as quantitative
engineering indicators for interface cognitive efficiency.
These indicators are designed to be reproducible, comparable
across designs, and applicable to interface benchmarking and
optimization tasks.

2. RELATEDWORK

Our research is situated at the intersection of three rapidly
advancing domains: cognitive neuroscience in HCI (Neuro-
UX), deep learning models of the visual system, and
multimodal analysis of user behavior. This section reviews
the key developments in each area and highlights the unique
contribution of our integrated approach.

2.1. Neuro-UX: From Subjective Reports to Objective
Brain-Based Metrics

The evaluation of user experience has traditionally been
dominated by qualitative methods and behavioral analytics.
While indispensable, these methods provide an incomplete
picture of the user's internal state. The last decade has seen a
growing movement towards incorporating
neurophysiological and psychophysiological measures to
create a more holistic and objective understanding of UX [13].
Electroencephalography (EEG), with its high temporal
resolution, has emerged as a particularly valuable tool for
capturing the rapid neural dynamics associated with cognitive
processes like attention, cognitive load, and emotional
engagement during interface interaction [8, 14]. For instance,
studies have successfully used EEG-derived metrics, such as
the power in specific frequency bands (e.g., alpha, theta), to
quantify mental workload as users interact with different
interface designs [15, 16].

Eye-tracking has been a cornerstone of usability testing for
years, providing explicit data on where users look, for how
long, and in what sequence [7]. The real power, however,
comes from the fusion of EEG and eye-tracking. By co-
registering these two data streams, researchers can create
fixation-related potentials (FRPs), allowing them to analyze
brain activity precisely time-locked to the moment a user
fixates on a specific interface element [9]. This combined
approach has been used to assess the usability of websites,
evaluate the cognitive load of different interface layouts, and
understand the impact of design features on user attention [8,
17]. Despite these advances, a major limitation of existing
Neuro-UX research is the "stimulus complexity gap." Most
studies still rely on simplified or highly controlled stimuli, and
a principled, scalable method for characterizing the rich visual
content of real-world interfaces has been lacking. Our work
directly addresses this gap by introducing a deep learning
framework to systematically parse and represent complex
interface designs.

2.2. Deep Learning Models as Models of the Primate
Visual System

Parallel to the developments in Neuro-UX, the field of
computer vision has been revolutionized by deep neural
networks (DNNs). A fascinating line of inquiry has emerged
in cognitive neuroscience, using these high-performing
models as in-silico models of the primate visual system [11,
18]. A substantial body of research has shown that the
hierarchical architecture of DNNs trained on object
recognition tasks mirrors the hierarchical organization of the
ventral visual stream in the brain. Early layers of the network
learn simple features like edges and textures, similar to area
V1, while deeper layers learn more complex and abstract
representations, analogous to higher-order visual areas like V4
and IT [19].

More recently, a new class of models, pre-trained on
massive, multimodal datasets of images and text from the web,
has demonstrated even more remarkable alignment with
neural processing. The CLIP (Contrastive Language-Image
Pre-training) model, in particular, has been shown to provide
state-of-the-art predictions of neural responses to natural
images across the visual cortex [10, 20]. By learning to
associate images with their textual descriptions, CLIP
develops a rich visual-semantic representation space that
captures not just what an object is, but also its conceptual
meaning and context. This provides an unprecedented tool for
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brain encoding and decoding studies, allowing researchers to
model brain activity evoked by complex, naturalistic stimuli
[12, 21]. However, the application of these powerful models
to the domain of HCI and design research is still in its infancy.
While some studies have begun to use DNNs to predict
aesthetic preferences, none have yet leveraged them to model
the neural dynamics of real-time, interactive interface use.

2.3. Multimodal Analysis of Human-Computer
Interaction

The third pillar of our research is the multimodal analysis
of behavior. Human-computer interaction is inherently
multimodal, involving a continuous interplay of visual
perception, cognitive processing, and motor action. Capturing
and modeling this complexity requires integrating multiple
data streams. Our work builds on a tradition of research that
combines different modalities, such as eye-tracking and think-
aloud protocols, or physiological signals and system log data,
to gain deeper insights into user behavior [22].

The novelty of our approach lies in the specific
combination of modalities and the analytical framework we
employ. We are the first to integrate (1) high-density EEG, (2)
high-resolution eye-tracking, and (3) deep learning-based
visual feature extraction to deconstruct the neural basis of
interaction with real-world digital interfaces. The paper [23],
which serves as a methodological inspiration, successfully
used NLP models to decode the neural dynamics of natural
conversation from intracranial recordings. We adapt and
extend this paradigm from the auditory-linguistic domain to
the visual-interactive domain. Instead of using a language
model to parse spoken words, we use a vision model to parse
the visual elements of an interface. Instead of analyzing
speaker-listener transitions, we analyze the transitions
between user states like browsing and decision-making. This
cross-domain transfer of a powerful analytical framework
allows us to address a novel set of questions specific to the
field of design and HCI, representing a significant
methodological and conceptual advance for the field.

In summary, while previous research has independently
established the value of EEG and eye-tracking for UX
evaluation and the power of deep learning models for
explaining visual neuroscience, our study is the first to
synthesize these three elements into a cohesive framework to
investigate the neural underpinnings of naturalistic human-
computer interaction. This integration allows us to bridge the
stimulus complexity gap in Neuro-UX and apply cutting-edge

models from computational neuroscience to solve real-world
problems in design.

3. METHOD AND SYSTEM DESIGN

This study proposes an engineering-oriented multimodal
interface evaluation framework that integrates
electroencephalography (EEG), eye-tracking, and deep
learning-based visual feature extraction. The objective of this
framework is to provide a quantifiable and system-level
method for evaluating digital interface designs based on users’
cognitive responses. The proposed framework is designed as
a modular system consisting of signal acquisition, feature
extraction, neural-visual representation mapping, and
statistical evaluation modules, enabling reproducibility and
future system deployment. To investigate the neural dynamics
of digital interface interaction, we designed a multimodal
experiment that combined neurophysiological recording
(EEG), behavioral tracking (eye-tracking), and computational
modeling (Figure 1). All participants provided informed
consent, and the study protocol was approved by the
Institutional Review Board.

3.1. System Input-Output Definition
The input of the proposed engineering framework consists

of three synchronized data streams: (1) raw EEG signals
acquired from a 64-channel recording system, (2) eye-tracking
fixation coordinates and durations, and (3) static digital
interface images. The output of the system is a set of
quantitative neural–visual alignment metrics, including
channel-wise and frequency-specific correlation scores, which
serve as objective indicators of interface cognitive processing
efficiency. These outputs can be directly used for interface
comparison, optimization, and design decision support. These
outputs are formalized as engineering performance metrics,
enabling pairwise comparison between interface designs, task
conditions, and user groups. Specifically, higher neural–visual
alignment indicates lower cognitive decoding cost for
interface perception, serving as an objective proxy for
interface efficiency.

3.2. Participants
Thirty-two healthy, right-handed volunteers (16 female;

mean age: 28.5 years, s.d. = 4.2, range: 22-35 years) with
normal or corrected-to-normal vision participated in the study.
All participants were frequent users of web and mobile
applications and had no history of neurological or psychiatric
disorders. Participants were compensated for their time. All
participants provided written informed consent prior to
participation.
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Figure 1. Experimental Setup and Analysis Pipeline (A) The overall experimental paradigm, where participants view digital interfaces while their EEG and
eye-tracking data are recorded. (B) A schematic of the 64-channel EEG layout, colored by major brain regions (Frontal, Central, Temporal, Parietal, Occipital).
(C) The structure of the two experimental tasks: a 30-second free-viewing block followed by a goal-directed task. (D) An example of a participant's fixation
scan path overlaid on an interface, with circle size indicating fixation duration. (E) The main steps of the data analysis pipeline, from preprocessing to statistical
analysis.

3.3. Experimental Stimuli and Tasks
3.3.1. Stimuli

We curated a diverse set of 20 digital interfaces as stimuli.
These included 10 desktop website homepages and 10 mobile
application interfaces, sampled from five different categories:
e-commerce, social media, news/content, productivity tools,
and travel/booking. The interfaces were chosen to be
representative of modern, real-world designs and included
well-known examples (e.g., Amazon, Instagram, The New
York Times) to ensure familiarity. All interfaces were
presented as high-resolution static images to maintain
experimental control over dynamic elements, while
preserving the visual complexity of the original designs.

3.3.2. Experimental Tasks
Participants completed two main tasks for each of the 20

interfaces:

 Free-viewing Task (30 seconds): Participants were
instructed to freely explore the interface as if they were
encountering it for the first time. This task was
designed to capture the neural dynamics of
unconstrained, bottom-up visual processing and
impression formation.

 Goal-directed Task (variable duration, max 60
seconds): Following the free-viewing task, participants
were given a specific, common goal to achieve within
the interface. For example, for an e-commerce site, the
task might be “Find the search bar and imagine typing

'headphones'”, or for a social media app, “Locate the
button to create a new post”. Participants indicated task
completion by pressing a key. This task was designed
to elicit top-down, goal-driven cognitive processes,
including visual search and decision-making.

The order of interface presentation was randomized for
each participant, and the entire experiment, including setup
and breaks, lasted approximately 90 minutes. The complete
experimental flowchart is shown in Figure 2.

This flowchart outlines the entire experimental procedure,
detailing the sequence of steps from participant recruitment
and setup to the multi-stage data analysis pipeline,
culminating in the visualization of results.
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Figure 2. Experimental Flowchart.

4. DATA ACQUISITION

4.1. EEG Recording
Continuous EEG data were recorded using a 64-channel

Ag/AgCl electrode cap (actiCAP, Brain Products GmbH)
arranged according to the international 10-10 system. The
signal was amplified using a BrainAmp DC amplifier and
recorded at a sampling rate of 1000 Hz. The ground electrode
was placed at AFz, and the reference electrode was at FCz.
Electrode impedances were kept below 10 kΩ throughout the
experiment.

4.2. Eye-Tracking Recording
Binocular eye movements were recorded using a screen-

based EyeLink 1000 Plus eye-tracker (SR Research Ltd.) at a
sampling rate of 1000 Hz. A 9-point calibration and validation
procedure was performed at the beginning of the experiment
and repeated as necessary to ensure an average spatial
accuracy of less than 0.5 degrees of visual angle. The EEG and
eye-tracking data streams were synchronized using the Lab
Streaming Layer (LSL) protocol, with event markers for
stimulus onset and participant responses sent simultaneously
to both systems.

4.3. Data Analysis
The analysis pipeline was designed to establish a direct

link between the neural signals (EEG), visual attention (eye-
tracking), and the content of the interface (CLIP model
features).

4.3.1. EEG Preprocessing
EEG data were preprocessed using the EEGLAB toolbox

in MATLAB. The continuous data were first band-pass
filtered between 1 and 100 Hz and a 50 Hz notch filter was
applied. The data were then segmented into epochs from -1s
to +2s around the onset of each eye fixation. Bad channels and

epochs containing large artifacts were rejected through visual
inspection. Independent Component Analysis (ICA) was then
performed to identify and remove components related to eye
blinks, saccades, and muscle artifacts. The cleaned epochs
were then re-referenced to the average of all channels.

For frequency-domain analysis, the cleaned continuous
data were filtered into five standard frequency bands: alpha
(8–13 Hz), beta (13–30 Hz), low-gamma (30–50 Hz), mid-
gamma (50–70 Hz), and high-gamma (70–100 Hz). The
instantaneous power in each band was computed using the
Hilbert transform.

4.3.2. Eye-Tracking and Fixation-based Analysis
The raw eye-tracking data were processed to identify

fixations and saccades using the standard algorithm in SR
Research's DataViewer software. We focused our analysis on
fixation events, as they represent periods when the brain is
actively processing detailed visual information. For each
fixation, we extracted its start time, duration, and x/y
coordinates on the screen.

Using the synchronized time-stamps, we aligned the
preprocessed EEG data with the eye-tracking data. For each
fixation, we extracted the corresponding EEG power from
each of the 64 channels and 5 frequency bands, averaged over
the duration of the fixation. This resulted in a large dataset
where each data point represented a single fixation, annotated
with its precise location on the interface and the corresponding
neural activity.

4.3.3. Interface Feature Extraction with CLIP
To create a quantitative representation of the visual

content of the interfaces, we used the pre-trained CLIP model
(ViT-B/32 variant) [20]. For each fixation, we cropped a
224x224 pixel patch from the interface image, centered on the
fixation's x/y coordinates. This patch represents the visual
information available to the user's fovea at that moment.

Each cropped image patch was fed into the CLIP image
encoder, which outputs a 512-dimensional feature vector, or
"embedding." This embedding captures the rich visual-
semantic content of the fixated region. This process was
repeated for every fixation made by every participant across
all interfaces, creating a comprehensive set of visual feature
vectors that were precisely aligned with the corresponding
neural data.

4.3.4. Correlating Neural Activity with CLIP Features
To quantify the relationship between brain activity and the

interface features, we performed a representational similarity
analysis (RSA) [24]. The core idea was to test whether the
similarity structure of neural responses to different fixated
regions was predicted by the similarity structure of the CLIP
embeddings for those same regions.

For each participant and each EEG channel, we computed
a neural Representational Dissimilarity Matrix (RDM), where
each entry represented the dissimilarity (1-Pearson correlation)
between the multi-band EEG power vectors for two different
fixations. Similarly, we computed a model RDM based on the
dissimilarity (Euclidean distance) between the CLIP
embeddings for the corresponding fixation patches. We then
calculated the Spearman rank correlation between the upper
triangles of the neural RDM and the model RDM. This
correlation value, for each channel, indicates how well the
CLIP model's representation of the visual world explains the
pattern of neural activity at that location.
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4.4. Statistical Analysis
To assess the statistical significance of the neural-model

correlations across the scalp, we used a permutation-based
approach. For each participant, we randomly shuffled the
order of the CLIP embeddings 1000 times, recomputed the
neural-model correlation for each shuffle, and thus generated
a null distribution of correlation values for each channel. The
true correlation value was then compared to this null
distribution to obtain a p-value. To correct for multiple
comparisons across the 64 channels, we used a cluster-based
permutation test, which effectively controls the family-wise
error rate by identifying significant clusters of adjacent
channels.

To compare the neural dynamics between the free-viewing
and goal-directed tasks, we performed paired t-tests on the
neural-model correlation values for each channel. This
allowed us to identify brain regions where the alignment
between neural activity and CLIP representations was
significantly modulated by the user's task context.

5. RESULTS

Our analysis revealed a robust and systematic relationship
between the neural activity of participants interacting with
digital interfaces and the visual-semantic representations
derived from the CLIP deep learning model. These findings

hold across participants, interface types, and interaction tasks,
providing a detailed neural account of interface perception.

5.1. Widespread Correlation between Neural Activity
and CLIP Representations

We first sought to determine whether a general
correspondence exists between brain activity and the features
encoded by the CLIP model. By correlating the
representational similarity of EEG responses with the
similarity of CLIP embeddings for thousands of individual eye
fixations, we found significant correlations across a wide array
of EEG channels (Figure 3A). Themean correlation (R) across
all channels and participants was 0.22 (s.d. = 0.11),
significantly above chance levels (p < 0.001, permutation test).
From an engineering evaluation perspective, these correlation
values provide a quantitative criterion for distinguishing
interface designs with different levels of cognitive processing
efficiency, enabling objective comparison beyond traditional
subjective usability metrics. The distribution of these
correlations was not uniform across the scalp. As
hypothesized, the strongest correlations were consistently
observed over posterior brain regions, particularly occipital
and temporal channels, which are known to be central to visual
processing. For instance, channels in the occipital lobe (e.g.,
Oz, O1, O2) exhibited mean correlations often exceeding
R=0.35.

Figure 3. Neural-CLIP Correlation Across Channels, Frequencies, and Regions. A: Mean correlation for each of the 64 EEG channels, averaged across all
participants and frequency bands. Colors indicate the brain region. The dashed line represents the chance level. B: Mean correlation strength for each of the
five frequency bands, showing a clear increase with frequency. C: Mean correlation strength for each major brain region, highlighting the dominance of
posterior areas. D: A heatmap showing the mean correlation for each channel (x-axis) and frequency band (y-axis), illustrating the concentration of high
correlations in high-frequency bands over posterior channels. E: A histogram showing the distribution of the number of significant channels per participant. F:
Scatter plot showing the significant positive relationship between participants' mean fixation duration and their mean neural-model correlation. G: Inter-
participant variability in mean correlation scores, with each point representing one participant's average.
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5.2. Correlation Strength is Modulated by Frequency
Band and Brain Region

To deconstruct this overall effect, we analyzed the
correlations within five distinct frequency bands. The results
showed a clear frequency-dependent relationship (Figure 3B).
The strength of the neural-model correlation systematically
increased with frequency, with the lowest correlations in the
alpha band (mean R = 0.12) and the highest in the high-gamma
band (mean R = 0.31). This suggests that higher-frequency
neural oscillations, particularly in the gamma range, are more
tightly coupled with the complex visual features captured by
the CLIP model.

This frequency effect was further differentiated by brain
region (Figure 3C, 3D). A heatmap of correlations across all
channels and frequency bands revealed that the strong high-
gamma correlations were most prominent in occipital and
temporal channels. In contrast, frontal channels showed a
more distributed pattern of correlations across beta and low-
gamma bands. This double dissociation—high-gamma in
posterior regions and mid-range frequencies in anterior
regions—points to distinct neural computations underlying

interface perception. On average, occipital regions showed the
highest correlation (mean R = 0.29), followed by temporal (R
= 0.26), parietal (R = 0.21), frontal (R = 0.18), and central (R
= 0.16) regions.

We also observed considerable variability across
participants, both in the number of channels showing
significant correlations (Figure 3E) and in the overall strength
of the neural-model correspondence (Figure 3F). Nevertheless,
the general pattern of posterior, high-frequency dominance
was consistent across the majority of the cohort. Interestingly,
we found a weak but significant positive relationship between
a participant's mean fixation duration and their average neural-
model correlation (r = 0.42, p = 0.018; Figure 3G), suggesting
that longer information-gathering periods at each fixation
point may lead to a richer neural encoding that is better
captured by the model.

A detailed analysis of each frequency band's topographic
distribution is shown in Figure 4, which reveals the distinct
spatial patterns associated with different oscillatory
frequencies.

Figure 4. Detailed Frequency Band Analysis. A: A bar chart showing the mean correlation for each frequency band within each brain region, illustrating the
interaction between frequency and location. B-D: Simplified topographic plots showing the distribution of correlation strength across the scalp for each of the
five frequency bands individually. The color indicates the correlation strength (R), revealing distinct spatial patterns for each band.

5.3. Task Context Dynamically Modulates Neural
Representations

Next, we investigated how the neural representation of the
interface changes as a function of the user's goal. We
compared the neural-model correlations obtained during the
unconstrained 'Free-viewing' task with those from the 'Goal-

directed' task. Overall, the correlation with CLIP
representations was significantly stronger during the goal-
directed task (mean R = 0.25) compared to free-viewing
(mean R = 0.19; t(31) = 5.8, p < 0.001; Figure 5A). This
indicates that the brain's visual processing aligns more closely
with the model's feature space when the user is actively
searching for specific information.
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Figure 5. Task-based Modulation of Neural-CLIP Correlation. A: Overall mean correlation for the Free-viewing and Goal-directed tasks. The goal-directed
task shows a significantly higher correlation. ***p < 0.001. B: The channel-wise difference in correlation (Goal-directed - Free-viewing). Positive values
(green) indicate a stronger correlation in the goal-directed task. C: A bar chart comparing the mean correlation for each brain region across the two tasks,
showing the largest increase in the Frontal region. D: A scatter plot comparing each participant's mean correlation in the two tasks. Nearly all participants fall
above the identity line, indicating a consistent task effect. E: A histogram of the effect size (Cohen's d) for the task difference across all channels, showing a
clear positive shift.

The topographical distribution of this task-based
modulation was particularly revealing (Figure 5B). While
nearly all channels showed an increase in correlation during
the goal-directed task, the effect was most pronounced in
frontal and central channels. A direct comparison by brain
region confirmed that the frontal lobe exhibited the largest
increase in correlation (Figure 5C), consistent with its role in
executive function, planning, and top-down attentional control.
A participant-wise scatter plot (Figure 5D) shows that this
effect was highly consistent, with nearly every participant
showing a stronger mean correlation in the goal-directed
condition. This finding is further supported by the distribution
of effect sizes (Cohen's d), which shows a clear positive shift,
with the largest effects concentrated in anterior channels
(Figure 5E).

5.4. Temporal Dynamics of Interface Processing
To understand the temporal evolution of neural processing

following a fixation, we examined the EEG activity time-
locked to fixation onset. Figure 6A shows the grand-average
event-related potential (ERP) for the two task conditions. In
both tasks, a clear positive-going potential emerges after
fixation onset, peaking around 300-500 ms. Furthermore, by
comparing the mean activity in early (0-500ms) and late (500-
1000ms) time windows (Figure 6B), we found that the task
difference was most prominent in the early window, again
highlighting the role of top-down signals in modulating the
initial phase of visual processing. However, the amplitude of

this response was significantly larger and its peak latency was
earlier during the goal-directed task compared to free-viewing
(Figure 6C). This suggests a more rapid and robust neural
engagement with visual information when a specific goal is
active.

5.5. Differentiated Neural Responses to Interface
Categories

Finally, we explored whether the type of interface being
viewed influenced the neural dynamics. We grouped the data
by the five interface categories (E-commerce, Social Media,
News, Productivity, Travel) and found significant differences
in both behavioral and neural measures (Figure 7). E-
commerce and Travel sites, which are typically dense with
product images and information, elicited the highest neural-
model correlations (Figure 7A). Behaviorally, these categories
were also associated with a higher number of fixations (Figure
7B). A positive correlation was found between the mean
number of fixations for a category and its mean neural-model
correlation (r = 0.89, p = 0.04; Figure 7C), suggesting that
more visually complex or engaging interfaces drive both more
exploratory eye movements and a stronger alignment of neural
activity with the deep learning model's feature space. The
violin plots in Figure 7D illustrate the distinct distributions of
correlation values for each category, further emphasizing that
the brain processes different types of interfaces in measurably
different ways.
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Figure 6. Temporal Dynamics of Neural Processing. A: Grand-average event-related potential (ERP) time-locked to fixation onset (0 ms) for the Free-viewing
(blue) and Goal-directed (red) tasks. Shaded areas represent the standard error of the mean. B: A boxplot comparing the mean neural activity in early (0-500ms)
and late (500-1000ms) time windows post-fixation. C: A histogram of the peak latency of the neural response for each participant in the two tasks, showing a
shift towards earlier peaks in the goal-directed condition.

Figure 7. Analysis by Interface Category. A: Mean neural-model correlation for each of the five interface categories. B: Mean number of fixations for each
category, indicating differences in visual exploration behavior. C: A scatter plot showing the significant positive relationship between the mean number of
fixations and the mean correlation for each category. D: Violin plots showing the distribution of correlation values for each category, illustrating the different
neural processing profiles elicited by different types of designs.
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In summary, our results provide a comprehensive, multi-
faceted view of the neural dynamics of interface interaction.
We demonstrate that these dynamics are systematically
structured, quantifiable via deep learning models, and
sensitive to both the user's internal goals and the external
visual content.

6. DISCUSSION

In this study, we introduced a novel framework combining
EEG, eye-tracking, and deep learning vision models to
investigate the neural dynamics of human interaction with
real-world digital interfaces. Our results provide compelling
evidence that the brain's processing of complex visual designs
can be effectively modeled and decoded, offering
unprecedented insights into the neurocognitive foundations of
user experience. The findings support our core hypotheses and
have significant implications for the fields of design, HCI, and
cognitive neuroscience.

6.1. The Brain's Representation of Interfaces Aligns
with Deep Learning Models

A central finding of our study is the strong and systematic
correlation between neural activity and the feature
representations of the CLIP model. This demonstrates that
state-of-the-art vision models, trained on vast datasets of
natural images and language, have learned a representational
space that is remarkably analogous to the one employed by the
human brain when processing complex, man-made stimuli
like digital interfaces. The fact that this alignment was
strongest in occipital and temporal brain regions provides a
powerful validation of our approach, grounding our findings
in the well-established functional anatomy of the visual
system [18].

Our results extend the growing body of work that uses
DNNs as in-silico models of biological vision [11, 19]. While
previous studies have shown this correspondence for natural
images or simple objects, our work is the first to demonstrate
it in the context of a highly ecological, interactive task
involving complex, structured designs. This bridges the
"stimulus complexity gap" that has long been a challenge for
Neuro-UX research [13]. It suggests that we can move beyond
simple stimuli and begin to quantitatively model the neural
responses to the rich, hierarchical content of the digital
environments we interact with daily.

The observed gradient of correlation strength across
frequency bands—increasing from alpha to high-gamma—is
also highly significant. It aligns with the known roles of these
frequency bands in cognition, where gamma oscillations are
strongly implicated in local cortical computation, feature
binding, and conscious perception, while lower frequencies
like alpha are associated with attentional suppression and
large-scale network coordination [5, 14]. The tight coupling
between high-gamma activity and CLIP features, particularly
in visual cortex, suggests that these high-frequency
oscillations are the primary carriers of detailed visual
information about the interface, a finding that resonates with
similar observations in studies of natural scene perception [25].

6.2. Top-Down Goals Reshape the Neural Landscape of
Interaction

Perhaps our most important finding is that the user's task
goal dynamically reshapes the neural representation of the
interface. The significant increase in neural-model correlation
during the goal-directed task, especially in frontal brain

regions, provides a clear neural signature of top-down
attentional modulation. When a user is simply browsing, their
perception may be driven more by the bottom-up salience of
visual elements. However, when they are actively searching
for a target, their brain appears to tune its visual processing to
become more "model-like" — that is, more aligned with the
optimized, feature-rich representations learned by the deep
learning model. The frontal lobe's involvement is critical here,
as it is the likely source of the top-down signals that bias
processing in posterior visual areas to prioritize task-relevant
information.

This finding has profound implications for design and UX
evaluation. It provides objective, neural-level evidence for the
fundamental distinction between different user modes of
interaction (e.g., browsing vs. searching). It suggests that a
"good" design might be one that facilitates this neural tuning,
allowing the brain to efficiently represent and locate task-
relevant elements. The faster and stronger neural response
observed in the time-locked analysis of the goal-directed task
(Figure 4) further supports this interpretation, suggesting a
more efficient and decisive processing of visual information
when a clear goal is present.

6.3. Towards a Neuro-Grounded Science of Design
Our research contributes to the maturation of design and

HCI from a practice-based craft to a science grounded in the
principles of human cognition and neuroscience [22]. By
demonstrating that different interface categories (e.g., E-
commerce vs. Social Media) elicit distinct neural signatures,
we open the door to a neuro-taxonomy of design. The
correlation we found between an interface category's visual
complexity (proxied by fixation counts) and its neural-model
alignment suggests that we can begin to quantify abstract
design qualities like "engagement" or "information density" at
the level of brain activity.

The proposed framework can be directly applied to
industrial interface evaluation scenarios such as A/B interface
testing, early-stage design screening, and data-driven interface
optimization, providing engineers with objective indicators
for design decision-making. Instead of relying solely on what
users say or do, we can directly measure how their brains
process a design, moment by moment, fixation by fixation.
This could allow designers to identify specific elements that
cause cognitive friction, fail to capture attention, or are
processed inefficiently, all without interrupting the user's
natural interaction. In the future, such methods could be
integrated into real-time, neuro-adaptive interfaces that
dynamically adjust their layout or content based on the user's
inferred cognitive state.

6.4. Limitations and Future Directions
This study has several limitations that point to important

avenues for future research. First, our use of static images,
while necessary for experimental control, does not capture the
full interactivity of modern interfaces (e.g., animations,
transitions). Future work should extend this paradigm to more
dynamic stimuli, possibly using virtual reality environments
to achieve both interactivity and experimental control [9].
Second, while EEG provides excellent temporal resolution, its
spatial resolution is limited. Combining this approach with
methods like fMRI could provide a more precise localization
of the brain regions involved. Third, our analysis relied on a
single vision model, CLIP. While it performed remarkably
well, comparing different model architectures (e.g., ViT,
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ConvNeXt) could reveal which aspects of model design are
most critical for predicting neural activity, further refining our
understanding of both artificial and biological vision [3, 26].

Finally, the correlational nature of our study does not
permit causal inferences. Future research could employ brain
stimulation techniques (e.g., TMS) to causally test the role of
specific brain regions identified in our analysis. It would also
be valuable to conduct a closed-loop study where insights
from the neural analysis are used to redesign an interface, with
the prediction that the redesigned version will elicit more
efficient neural processing and lead to improved behavioral
performance. Such a study would provide the ultimate
validation for the practical utility of the design neuroscience
approach.

7. CONCLUSION

In conclusion, our study demonstrates that the complex
neural dynamics of human-computer interaction can be
successfully mapped and understood by integrating
neurophysiological recordings with deep learning vision
models. We provide the first direct evidence that the human
brain's representation of digital interfaces is systematically
related to the feature space of models like CLIP, and that this
relationship is dynamically modulated by the user's goals and
the visual content of the design. Our findings reveal a robust
neural signature for top-down attention in interface interaction,
characterized by an increased alignment of frontal and
posterior brain activity with the model's representations
during goal-directed tasks. This work establishes an
engineering-oriented evaluation paradigm that transforms
cognitive responses into quantifiable design metrics,
contributing a practical methodology to digital interface
engineering and human-computer interaction systems. By
providing a window into the brain's real-time processing of
design, this approach holds the promise of revolutionizing
how we evaluate digital products and ultimately, how we
design them.
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