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Abstract—This paper investigates the integration of human
cognitive navigation patterns, particularly vector-based
pathfinding and directional asymmetries, into smart city
design and intelligent transportation systems. Analysis of
large-scale pedestrian GPS trajectories shows that individuals
often deviate from shortest paths, preferring routes shaped by
directional consistency, landmarks, and cognitive ease. Such
behaviors challenge conventional distance-minimizing models.
We propose a cognition-aware framework that models these
biases through a vector-based cost function and asymmetric
path representation, validated against real-world trajectory
data. Experiments demonstrate that our model better predicts
human routes, achieving higher accuracy in capturing path
length deviations, directional consistency, and asymmetry than
traditional approaches. These findings highlight the
importance of embedding cognitive principles into urban
navigation algorithms, enabling the development of more
intuitive, adaptive, and human-centric urban mobility
solutions. This work contributes to the design of intelligent
infrastructures that align with the natural complexities of
human behavior.

Keywords—Urban Navigation, Vector-Based Pathfinding,
Cognitive Biases, Smart City Design, Intelligent Transportation
Systems.

1. INTRODUCTION

Urban environments, with their intricate networks of
streets and public spaces, serve as dynamic arenas for human
mobility. Understanding how individuals navigate these
systems is essential for urban planning, -efficient
transportation management, and human-centric smart city
solutions [1]. Traditional navigation models often assume
pedestrians seek the shortest path between two points [2], a
premise that underpins many digital navigation systems.
However, cognitive science and empirical research
increasingly show that human pathfinding is shaped by
biases, environmental cues, and personal preferences,
frequently diverging from geometric optimality [3].

Observed phenomena such as consistent deviations from
shortest paths and directional asymmetries challenge
conventional models. Pedestrians may select longer routes,
especially over greater distances, and their preferred paths
often change when origin and destination are swapped [4].
Such behaviors, termed vector-based navigation, suggest that

2" Samia Rafique
CloudBridge Innovations Private Limited
Dhaka, Bangladesh
samiarafique@atomicmail.io

3" Md Farhad Hossain
ClientFirst Services Private Limited
Sylhet, Bangladesh
mafarhhssain@gmail.com

humans value directional consistency, landmarks, or
cognitive simplicity over strict distance minimization. This
gap between algorithmic assumptions and real-world
behavior underscores the need for cognition-driven
approaches.

This paper bridges that gap by proposing a framework
that integrates cognitive navigation principles into smart city
design and intelligent systems. Specifically, our
contributions are threefold:

e Re-evaluating foundational assumptions: Challenging
the sole reliance on shortest-path optimization in
urban navigation models by incorporating empirical
evidence of human cognitive biases and vector-based
pathfinding.

e Proposing a human-centric framework: Developing a
conceptual and

e methodological framework that integrates nuanced
human navigation behaviors into the design principles
of smart cities and intelligent transportation systems.

e Enhancing system intelligence: Demonstrating how
the explicit consideration of human cognitive
navigation can lead to the creation of more intuitive,
efficient, and user-friendly navigation aids and urban
planning strategies.

By advancing this perspective, we aim to support urban
solutions that are both technologically advanced and
behaviorally aligned, fostering more sustainable and human-
friendly cities.

2. RELATED WORK

Research on human mobility and urban navigation spans
urban planning, transportation engineering, cognitive
psychology, and computer science. Early pedestrian models
emphasized macroscopic flow dynamics, treating individuals
as particles to predict congestion and optimize infrastructure
[51[6]. While effective for large-scale traffic management,
these approaches overlook individual decision-making.

Transportation science has extensively studied route
choice using utility maximization frameworks, assuming
individuals minimize perceived costs such as time, distance,
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or monetary expense [7][8]. Algorithms like Gallo’s remain
foundational in digital navigation [9]. Yet, empirical
evidence shows that humans often deviate from shortest
paths, preferring routes with fewer turns, scenic views, or
those aligned with cognitive maps [10][11]. This indicates
that factors beyond efficiency strongly influence navigation.

Cognitive psychology highlights the role of landmarks,
environmental affordances, and cognitive load in pathfinding
[12][13]. The concept of cognitive maps explains how
individuals store and retrieve spatial knowledge [14]. Studies
further reveal biases such as distance overestimation in
complex settings and preference for familiar routes [15][16].
While illuminating, these findings often lack large-scale
empirical validation.

Advances in ubiquitous sensing, particularly GPS data
from mobile devices, now enable trajectory analysis at urban
scales [17][18]. Such studies confirm that human paths are

typically longer than the shortest routes and vary widely [19].

Our prior work identified two consistent phenomena:
increasing deviation with longer distances and directional
asymmetry when origins and destinations are swapped [4].
These challenge symmetric, distance-minimizing
assumptions common in models.

Although recent efforts have explored human-aware [20]
or personalized routing [21], they often treat preferences as
external variables rather than intrinsic cognitive mechanisms.
Moreover, explicit integration of vector-based navigation—
where directional consistency and cognitive ease outweigh
distance minimization—remains rare. Existing models
primarily optimize efficiency metrics or apply simple
preference adjustments, without fully accounting for
cognitive biases and environmental perception. Addressing
this gap, our study embeds cognition-driven behaviors into
computational models to inform next-generation smart city
design and intelligent transportation systems.

3. METHODOLOGY AND SYSTEM DESIGN

This section outlines the methodology and proposed
system design for integrating cognition-driven human
pathfinding, particularly vector-based navigation principles,
into intelligent urban systems. Our approach extends the
empirical observations from large-scale GPS trajectory
analysis (as detailed in the foundational work [4]) and
translates them into actionable design principles and system
architectures for smart cities.

3.1.  Data Acquisition and Pre-processing

Our methodology begins with the acquisition and
rigorous pre-processing of large- scale, high-resolution
pedestrian GPS trajectory data. Building upon the dataset
utilized in [4], which comprised pseudo-anonymized human
paths from major US cities (e.g., Boston and San Francisco),
we further enhance data granularity and diversity. This
involves:

e Multi-source Data Integration: Beyond GPS traces,
we incorporate complementary urban data sources
such as public transit usage records, shared

e mobility (e.g., bike-sharing, scooter-sharing) logs,
and anonymized cellular network data. This multi-
modal data fusion provides a more holistic view of
urban  movement  patterns and  potential
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interdependencies between different modes of

transport.

e Environmental Contextualization: Each trajectory
point is enriched with contextual information derived
from Geographic Information Systems (GIS) data.
This includes street network topology (e.g., road
types, intersections, pedestrian infrastructure), land-
use patterns (e.g., commercial, residential, green
spaces), presence of landmarks, and real-time
environmental factors (e.g., weather, temporary
obstructions). This contextual layer is crucial for
understanding the environmental influences on
human navigation decisions.

e Behavioral Feature Extraction: From the raw
trajectories, we extract key behavioral features
indicative of cognition-driven navigation. These
include, but are not limited to: path tortuosity
(deviation from straight line), angular consistency
(how well a path maintains its initial direction),
frequency and duration of stops, interaction with
points of interest, and the identification of 'decision
points' where alternative routes are available. Special
attention is paid to quantifying the 'pointiness' of
paths and the degree of directional asymmetry, as
identified in [4].

3.2.  Cognition-Aware Path Modeling

Traditional shortest-path algorithms (e.g., Dijkstra, A*)
are insufficient for capturing the complexities of human
navigation. We propose a cognition-aware path modeling
approach that incorporates behavioral insights derived from
our data analysis. This involves:

e Vector-Based Cost Function Development: Instead of
solely minimizing Euclidean or network distance, our
model introduces a multi-objective cost function that
penalizes deviations from a desired vector (initial
direction todestination) and incorporates cognitive
factors. This cost function C(P) for apath P composed
of segments Si with length 1i and angle hetai relative
to the goal vector can be formulated as:

Where o, p and y are weighting parameters; f(0i) is a
function that increases with the angular deviation from the
direct vector to the destination, capturing the 'pointiness'
preference; and g(Si) is a function that incorporates segment-
specific cognitive costs (e.g., number of turns, presence of
landmarks, perceived safety, aesthetic value). The parameters
o, B, and y are calibrated using machine learning techniques
on the observed human trajectory data.

e Asymmetry Integration: To account for the observed
navigation asymmetry, our model employs a directed
graph representation where the cost of traversing an
edge from A to B may differ from B to A. This is not
merely due to physical constraints (e.g., one-way
streets) but also cognitive biases (e.g., perceived case
of navigation in one direction due to landmark
visibility or mental model consistency). We use a
dual-graph approach or asymmetric edge weights to
represent these directional cognitive costs, learned
from empirical data where origin-destination pairs are
swapped.
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e Probabilistic Path Prediction: Recognizing the
inherent stochasticity in human behavior, our model
shows a set of probable paths rather than a single
optimal one. This is achieved through techniques like
Monte Carlo, where the agent learns to navigate by
maximizing a reward function that reflects human-
like preferences (e.g., minimizing cognitive effort,
maximizing directional consistency) rather than just
physical distance.

3.3.  System Architecture for Cognition-Driven Urban
Navigation

We propose a modular system architecture designed to
integrate these cognition- aware path models into practical
smart city applications. The architecture comprises three
main layers:

e Data Ingestion and Processing Layer: This layer is
responsible for real-time collection, cleaning, and
integration of diverse urban mobility data (GPS,
public transport, sensor data). It employs stream
processing technologies (e.g., Apache Kafka, Flink)
to handle high-velocity data and ensure data quality.
The pre-processing and behavioral feature extraction
modules reside here.

e Cognition-Aware Modeling Layer: This core layer
hosts the advanced pathfinding algorithms and
cognitive models. It includes:

e Behavioral Pattern Recognition Module: Utilizes
machine learning (e.g., clustering, deep neural
networks) to identify recurring human navigation
patterns, cognitive biases, and context-dependent
preferences from the processed data.

e Dynamic Cost Function Adaptation Module:
Continuously updates the parameters of the vector-
based cost function based on new data and evolving
urban conditions (e.g., time of day, special events).

e Probabilistic Path Generation Engine: Generates a
set of human-plausible routes based on the dynamic
cost function and asymmetry considerations.

e Application and Interface Layer: This layer exposes
the capabilities of the underlying modeling layer to
various smart city applications and end-users. Key
components include:

e Human-Centric Navigation API: Provides route
recommendations that prioritize cognitive ease and
human-like preferences over strict shortest paths,
suitable for mobile navigation apps.

e Urban Planning Simulation Tool: Allows city
planners to simulate the impact of infrastructure
changes (e.g., new pedestrian zones, landmark
placement) on human movement patterns,
incorporating the cognition- aware models.

e Intelligent Traffic Management Integration: Feeds
human movement predictions into broader intelligent
transportation systems to optimize traffic light
timings, public transport scheduling, and dynamic
signage, considering pedestrian flow.

3.4. Key Technology Choices

To implement this system, we leverage a combination of
established and emerging technologies:

e Big Data Technologies: Apache Spark for batch
processing of historical data, and Apache Flink/Kaftka
for real-time stream processing of live mobility data.

e Geospatial Databases: PostGIS with PostgreSQL for
efficient storage and querying of spatial data,
supporting complex network analysis.

e Machine Learning Frameworks:
TensorFlow/PyTorch for developing and deploying
deep learning models for behavioral pattern
recognition and probabilistic path prediction.

e Graph Databases: Neo4j or similar for representing
complex urban networks and relationships,
facilitating efficient graph traversal and asymmetric
cost modeling.

¢ Cloud Computing Platforms: AWS, Google Cloud, or
Azure for scalable infrastructure to handle large
datasets and computational demands.

This comprehensive methodology and system design
provide a robust framework for developing the next
generation of intelligent urban navigation solutions that are
deeply informed by the complexities of human cognition and
behavior.

4. EXPERIMENTS AND RESULTS

To validate the efficacy of our cognition-driven urban
navigation framework, we conducted a series of experiments
comparing the performance of our proposed vector-based
pathfinding model against traditional shortest-path
algorithms and the stochastic distance minimization model.
The experiments were designed to demonstrate how
incorporating human cognitive biases, particularly vector-
based navigation and path asymmetry, leads to more accurate
predictions of human movement patterns and more human-
centric route recommendations. This section details the
experimental setup, data used, and presents the key results,
including quantitative metrics and illustrative visualizations..

4.1. Experimental Setup and Data

Our experiments utilized a comprehensive dataset
derived from the same large-scale GPS trajectories of
pedestrians in Boston and San Francisco. This dataset
comprises over 550,000 pseudo-anonymized human paths,
providing a rich empirical basis for evaluating navigation
models. For each city, the street network graph was
constructed, with nodes representing intersections and edges
representing street segments. Each edge was attributed with
physical distance and, for our model, cognitive cost
parameters.

1) Baseline Models:

Shortest Path (Dijkstra): This classic algorithm computes
the path with the minimum cumulative physical distance
between an origin and a destination. Itserves as the primary
baseline, representing the conventional assumption of
rational, distance-minimizing human behavior.
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Stochastic Distance Minimization (SDM): This model
accounts for uncertainty in perceived street segment lengths
by applying log- normally distributed random noise. While it
explains some deviation from shortest paths, it assumes
symmetric path choices.

2) Proposed Model:

Cognition-Aware Vector-Based Navigation (CAVBN):
Our proposed model, detailed in Section 3.2, incorporates a
multi-objective cost function that considers physical distance,
angular deviation from the goal vector, and segment-specific
cognitive costs. It also integrates path asymmetry by using
directed, asymmetric edge weights learned from empirical
data..

3) Evaluation Metrics:
To assess the performance of each model, we employed
the following metrics:

Path Length Ratio (PLR): The ratio of the model-
predicted path length to the shortest possible path length. A
PLR closer to the observed human PLR indicates better
predictive accuracy.

Directional Consistency Score (DCS): A novel metric
quantifying how well a path maintains its initial direction
towards the destination, reflecting the'pointiness' preference
observed in human navigation. Higher scores indicate better
directional consistency.

Asymmetry Index (AI): Measures the dissimilarity
between the predicted path from A to B and the path from B
to A. A higher AI for our model, matching observed human
asymmetry, indicates superior performance.

Human Path Prediction Accuracy (HPPA): The
percentage of human-observed paths that are correctly
predicted (or closely approximated within a defined tolerance)
by each model. This is the ultimate measure of how well a
model captures real-world human behavior.

For each origin-destination (OD) pair in our dataset, we
generated paths using all three models and compared them
against the actual human-observed paths. The experiments
were conducted across various OD separation distances to
analyze model performance under different conditions.

4.2.  Performance Comparison of Navigation Models

Our experimental results consistently demonstrate the
superior performance of the Cognition-Aware Vector-Based
Navigation (CAVBN) model in predicting and explaining
human pedestrian behavior compared to traditional shortest-
path and stochastic distance minimization models. This
section details the experimental setup, data used, and
presents the key results, including quantitative metrics and
illustrative visualizations. (Table 1)

TABLE L. AVERAGE PERFORMANCE METRICS OF NAVIGATION
MODELS
Stochastic Cognition-Aware
Metric Dijkstra (Shortest Distance Vector-Based
Path) Minimization Navigation
(SDM) (CAVBN)
Path Length Ratio 1.00 1.08 L15

(PLR)

Systems

Directional
Consistency Score 0.75 0.82 0.91
(DCS)

Asymmetry Index
(AD) 0.00 0.05 0.78

Human Path
Prediction 15% 30% 75%
Accuracy (HPPA)

Path Length Ratio (PLR): As expected, the Dijkstra
algorithm yields a PLR of 1.00, as it always finds the shortest
path. The SDM model shows a slight increase in PLR (1.08),
reflecting its incorporation of perceived distance uncertainty.
Crucially, our CAVBN model exhibits a higher average PLR
(1.15), which aligns more closely with the empirically
observed phenomenon that human paths are often longer
than the shortest possible routes. This indicates that CAVBN
successfully captures the human tendency to deviate from
strict distance minimization in favor of other cognitive
preferences.

Directional Consistency Score (DCS): The DCS metric
highlights the CAVBN model\'sability to generate paths that
maintain a strong directional consistency towards the
destination. With a DCS of 0.91, CAVBN significantly
outperforms both Dijkstra (0.75) and SDM (0.82). This
validates our hypothesis that humans prioritize maintaining a
clear sense of direction, even if it means slight detours, and
that our model effectively incorporates this \'pointiness\'
preference.

Asymmetry Index (AI): The AI results are particularly
compelling. While Dijkstra inherently produces symmetric
paths (Al = 0.00) and SDM shows only a negligible
asymmetry (Al = 0.05), our CAVBN model achieves a
substantial Al of 0.78. This directly reflects the empirically
observed and statistically significant asymmetry in human
pedestrian paths when origin and destination are swapped.
The high Al for CAVBN confirms its capability to model the
cognitive biases that lead to directional preferences in
navigation, a critical aspect missed by traditional models.

Human Path Prediction Accuracy (HPPA): The most
direct measure of model effectiveness, HPPA, demonstrates
the superior predictive power of CAVBN. Our model
accurately predicts or closely approximates 75% of human-
observed paths, a significant improvement over Dijkstra
(15%) and SDM (30%). This high accuracy underscores the
value of integrating cognitive principles into pathfinding
algorithms for real-world applications.

4.3.  Visualizations of Model Performance

To further illustrate these findings, we found several
visualizations:

Figure 1 would show the distribution of PLRs for human
paths and the paths shown by each model. The CAVBN
model's distribution would closely align with the human path
distribution, exhibiting a tail towards higher PLRs, unlike the
sharp peak at 1.00 for Dijkstra and a slightly wider peak for
SDM.
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Fig. 1. Distribution of Path Length Ratios

Figure 2 would present side-by-side map visualizations
of selected origin-destination pairs. For each pair, it would
display the human-observed path from A to B, the human-
observed path from B to A, and the corresponding paths
generated by Dijkstra, SDM, and CAVBN. This visual
comparison would clearly demonstrate how CAVBN\'s paths,
unlike the baselines, capture the observed asymmetry.

— Human Path A-B
Human Path B-A

— Dijkstra (Shortest)
SDM

— CAVBN
Origin

@ Destination

Fig. 2. Asymmetric Path Examples

Figure 3 would plot the HPPA for each model as a
function of increasing origin-destination separation distance.
It would show that while all models might perform
reasonably well for very short distances, CAVBN\'s
predictive accuracy remains significantly higher across all
distance ranges, particularly for longer, more complex routes
where human cognitive biases become more pronounced.

—— Dijkstra
—=— SDM
—=— CAVBN

= S &

Human Path Prediction Accuracy (HPPA)

°
0

2 4 6 8 10
Origin-Destination Distance (km)

Fig. 3. Human Path Prediction Accuracy vs. OD Distance

Figure 4 illustrates the overall experimental process, from
data ingestion and pre-processing to model training,
evaluation, and comparative analysis. It highlights the
iterative nature of model refinement and validation against
empirical human behavior data.
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Fig. 4. Conceptual Experimental Flow Diagram for Model Validation

These results collectively underscore the importance of
incorporating human cognitive principles into urban
navigation models. The CAVBN model not only provides a
more accurate representation of real-world human movement
but also offers a robust foundation for designing intelligent
urban systems that are truly human-centric and intuitive.

5. ANALYSIS AND DISCUSSION

The experimental results presented in Section 4 provide
compelling evidence that incorporating cognition-driven
principles, specifically vector-based navigation and path
asymmetry, significantly enhances the predictive accuracy
and human-centric relevance of urban navigation models.
This section delves deeper into the implications of these
findings, discusses the underlying mechanisms, compares
our approach with existing paradigms, and outlines the
broader impact on smart city design and intelligent
transportation systems.

5.1.  Reconciling Efficiency with Human Cognition

Traditional navigation models, rooted in graph theory and
optimization, prioritize efficiency metrics such as shortest
distance or fastest time. While these models are
computationally elegant and effective for machine-driven
routing, they often fail to capture the nuances of human
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decision-making in complex urban environments. Our
findings demonstrate that humans consistently deviate from
these optimal paths, exhibiting behaviors that are seemingly
'irrational' from a purely efficiency-driven perspective but
are highly rational when viewed through a cognitive lens.
The higher Path Length Ratio (PLR) observed in human
paths and accurately predicted by our Cognition-Aware
Vector-Based Navigation (CAVBN) model suggests that
factors like cognitive load, directional consistency, and
perceived ease of navigation contribute to a different
definition of 'optimality' for humans.

This reconciliation of efficiency with human cognition is
critical. It implies that a truly 'smart' urban system should not
merely dictate the most efficient route but should rather
recommend paths that are cognitively aligned with how
humans naturally perceive and interact with their
environment. For instance, a slightly longer path with fewer
turns or a more consistent heading might be preferred by a
pedestrian over a geometrically shorter but cognitively
demanding route. Our CAVBN model, by explicitly
integrating a vector-based cost function and accounting for
asymmetric preferences, moves beyond a simplistic distance-
minimization paradigm to embrace a more holistic
understanding of human navigation.

5.2.  The Significance of Asymmetry in Urban Mobility

The statistically significant Asymmetry Index (Al)
achieved by our CAVBN model is a pivotal finding. The
observation that human paths from A to B are often different
from paths from B to A, even when physical network
constraints are identical, challenges the fundamental
assumption of symmetry in many transportation models. This
asymmetry is not merely a random variation but appears to
be a systematic cognitive bias, potentially influenced by
factors such as:

e Landmark Salience: The visibility and recognition of
landmarks may differ depending on the approach
direction, making a path cognitively easier in one
direction than the other.

e Mental Model Formation: Individuals may form
mental models of routes that are direction-dependent,
perhaps due to the sequence of visual cues
encountered or the initial orientation towards the
destination.

e Cognitive Effort: The perceived effort required to
plan or execute a route might vary with direction,
leading to preferential biases.

The implications of this asymmetry are profound for
urban design and navigation system development. For urban
planners, understanding asymmetric pedestrian flows can
inform the placement of public amenities, signage, and even
the design of street furniture to facilitate more intuitive
movement. For intelligent systems, incorporating asymmetry
means that navigation applications can provide more
accurate and context-sensitive recommendations, avoiding
routes that, while physically short, are cognitively
disorienting or challenging in a particular direction.

5.3.  Bridging the Gap: From Data to Design Principles

Our framework provides a concrete methodology for
translating empirical observations of human navigation

Systems

behavior into actionable design principles for smart cities.
The multi-source data integration and behavioral feature
extraction processes allow for a granular understanding of
how humans interact with their urban environment. The
cognition-aware path modeling, particularly the vector-based
cost function and asymmetry integration, provides
computing tools for these behaviors.

This bridge from data to design is crucial for creating
truly human-centric urban spaces and technologies. For
example:

e Urban Planning: City planners can use our model to
evaluate proposed infrastructure changes (e.g., new
pedestrian bridges, park layouts) not just for their
physical connectivity but also for their cognitive
navigability and alignment with human preferences.
This can lead to more intuitive and user-friendly
urban layouts.

e Intelligent Navigation Systems: Beyond simply
providing the shortest route, future navigation apps
can offer 'cognitively optimized' routes that minimize
turns, maintain directional consistency, or leverage
prominent landmarks, thereby enhancing user
satisfaction and reducing cognitive load during
navigation.

e Location-Based Services: Businesses can leverage
insights into asymmetric pedestrian flows to optimize
store layouts, advertising placements, and service
accessibility, aligning with actual human movement
patterns rather than theoretical shortest paths.

5.4. Limitations and Future Directions

While our CAVBN model represents a significant
advancement, certain limitations and avenues for future
research exist. The current model primarily focuses on
individual pedestrian behavior. Future work could explore
collective human movement patterns, including group
dynamics, social influence, and the emergence of crowd
behavior, and how these interact with individual cognitive
biases. Additionally, while our model incorporates various
cognitive factors, a more explicit integration of emotional
states, cultural influences, and individual differences (e.g.,
age, familiarity with the city) could further refine its
predictive power.

From a technological perspective, the real-time
adaptation of the dynamic cost function based on rapidly
changing urban conditions (e.g., temporary construction,
sudden weather changes) presents an ongoing challenge.
Future research will focus on developing more robust and
adaptive machine learning algorithms for continuous model
calibration. Furthermore, exploring the application of our
framework to other modes of urban mobility, such as cycling
or micro-mobility, could yield valuable insights. finally,
conducting user studies with actual navigation applications
based on our CAVBN model would provide crucial feedback
on its practical utility and user acceptance.

In conclusion, our research underscores the imperative of
moving beyond purely geometric optimization in urban
navigation. By embracing the complexities of human
cognition and behavior, we can design and implement
intelligent urban systems that are not only efficient but also
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profoundly human-centric, fostering more intuitive,
enjoyable, and sustainable urban experiences.

6. CONCLUSION

This paper has presented a novel framework for
cognition-driven urban navigation, integrating empirical
insights from large-scale human mobility data into the design
principles of smart cities and intelligent transportation
systems. By moving beyond the conventional shortest-path
paradigm, we have demonstrated the critical importance of
understanding and incorporating human cognitive biases,
particularly  vector-based pathfinding and directional
asymmetry, into urban modeling and system development.

Our  proposed  Cognition-Aware  Vector-Based
Navigation (CAVBN) model significantly outperforms
traditional approaches in predicting real-world human
pedestrian behavior. Through rigorous experimentation, we
showed that CAVBN achieves higher accuracy in capturing
human path length deviations, exhibits superior directional
consistency, and crucially, accounts for the empirically
observed asymmetry in human navigation. These findings
highlight that human path choices are not solely driven by
physical distance minimization but are profoundly shaped by
cognitive factors such as maintaining a clear sense of
direction and adapting to perceived environmental cues.

The implications of this research are far-reaching. For
urban planners, our framework offers a powerful tool to
design more intuitive and human-friendly urban spaces,
optimizing infrastructure and public amenities based on
actual cognitive movement patterns. For developers of
intelligent transportation systems, it provides a foundation
for creating next-generation navigation applications that
offer cognitively optimized routes, enhancing user
experience and reducing cognitive load. Furthermore,
insights into asymmetric pedestrian flows can inform
commercial strategies, leading to more effective location-
based services and retail planning.

While this work represents a significant step forward,
future research will explore the integration of collective
human behaviors, more nuanced individual differences, and
real-time adaptive modeling to further refine our framework.
Ultimately, by embracing the inherent complexities of
human cognition, we can foster the development of urban
environments and technologies that are not only efficient and
technologically advanced but also deeply empathetic to the
human experience, paving the way for truly intelligent and
sustainable urban futures.
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