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Abstract—In the era of data-driven innovation,
interdisciplinary design increasingly leverages vast datasets to
inform and optimize creative processes. However, the
integration of diverse data often introduces significant
challenges related to data privacy and security. This paper
proposes a novel framework for privacy-preserving cross-
disciplinary design innovation, inspired by the principles of data
reprogramming. We aim to develop a methodology that enables
the effective utilization of sensitive data in design contexts while
rigorously safeguarding individual privacy. Building on
generative modeling principles, our approach improves data
representation by balancing privacy preservation and feature
robustness. We demonstrate how information bottleneck theory
and reinforcement learning can be integrated to balance
predictive power with privacy preservation, ensuring that
design insights are derived from data without compromising
sensitive information. This framework is particularly relevant
for applications in healthcare, smart cities, and personalized
education, where design solutions must be both innovative and
ethically sound. Through extensive experimentation and
validation, we show that our method achieves strong
performance in design-related predictive tasks while effectively
mitigating privacy risks, thereby paving the way for a new
generation of privacy-conscious design methodologies.

Keywords—Cross-disciplinary design, Privacy-preserving,
Data reprogramming, Generative modeling, Information
bottleneck, Reinforcement learning.

1. INTRODUCTION

Recent progress in artificial intelligence (AI) and data
science is reshaping design practices, enabling data-informed
creativity and efficiency. Traditional design processes that
rely on intuition and qualitative reasoning are now being
complemented by data-driven methods, leading to more
informed and user-centered outcomes. This transition has
fostered cross-disciplinary collaboration, where insights from
engineering, business, and cultural studies converge to
generate new products, services, and systems [1].

However, the growing use of data in design introduces
critical challenges related to privacy and ethics. As design
increasingly engages with personal data, behavioral patterns,
and proprietary information, maintaining data privacy has
become essential. Existing data-driven design approaches
often emphasize utility and performance while

underestimating privacy concerns, leading to potential data
breaches and loss of user trust. In sensitive fields such as
healthcare and smart city design, these risks are particularly
acute. Regulations such as the General Data Protection
Regulation (GDPR) highlight the global urgency of
embedding privacy considerations into design practice [2].

This paper proposes a privacy-preserving framework for
data-driven design innovation. Building on the concept of
data reprogramming in data-centric AI, we aim to transform
raw, sensitive design data into privacy-preserving yet useful
representations. Our approach integrates information
bottleneck theory, generative modeling, and multi-agent
reinforcement learning to achieve this balance. We evaluate
the framework across multiple design-related datasets to
demonstrate its adaptability and effectiveness [3].

2. RELATEDWORK

2.1. Data-Driven Design and Innovation
Data-driven design has emerged as a transformative

approach, moving beyond traditional intuition-based methods
to leverage quantitative and qualitative data for informed
decision-making throughout the design process. Early work
focused on using data for user research and requirements
gathering, employing techniques such as surveys, interviews,
and observational studies to understand user needs and
behaviors. More recently, big data analytics and machine
learning have made it possible to analyze extensive datasets
such as user interaction logs, social media content, and sensor
outputs. These methods help designers identify behavioral
patterns, anticipate trends, and tailor design solutions to
individual needs [4]. For instance, in urban planning, data
from smart city sensors can inform the design of more
efficient transportation systems and public spaces [5]. In
product design, consumer data can guide feature development
and market positioning [6]. However, many of these
approaches primarily focus on maximizing design utility and
performance, often with insufficient attention to the privacy
implications of collecting and processing vast amounts of
personal data.

2.2. Privacy-Preserving Artificial Intelligence
The growing concerns over data privacy have led to a

surge in research on privacy-preserving AI (PPAI). PPAI
aims to develop AI models and systems that can learn from
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data without exposing sensitive information [7]. Key
techniques in PPAI include differential privacy,
homomorphic encryption, and federated learning. Differential
privacy adds carefully calibrated noise to data or model
outputs, providing strong privacy guarantees while
maintaining data utility [8]. Homomorphic encryption allows
computations to be performed on encrypted data, ensuring
that data remains confidential even during processing [9].
Federated learning enables collaborative model training
across decentralized datasets without sharing raw data, thus
preserving local data privacy [10]. While these techniques
offer robust solutions for privacy protection in AI, their
application in complex, interdisciplinary design contexts,
especially when dealing with diverse data modalities and
dynamic design processes, remains a challenge. Integrating
these methods seamlessly into a data reprogramming
framework for design innovation requires careful
consideration of their computational overhead and impact on
design outcomes.

2.3. Data Reprogramming and Feature Engineering
Data reprogramming, a core concept in data-centric AI,

focuses on transforming existing data representations to
enhance model performance or adapt data for new tasks [11].
This goes beyond traditional feature engineering, which often
involves manual creation or selection of features, by
employing automated or semi-automated methods to discover
optimal data representations [12]. Techniques such as neural
architecture search, meta- learning, and reinforcement
learning have been applied to data reprogramming to
automatically generate new features or modify existing ones
[13]. For example, in natural language processing, data
reprogramming can involve transforming text embeddings to
improve performance on specific downstream tasks [14]. In
computer vision, it might involve altering image
representations to enhance object recognition [15]. While
these methods have shown promising results in improving
predictive accuracy, most existing data reprogramming
approaches do not explicitly incorporate privacy
considerations. The focus has primarily been on utility
maximization, leaving a critical gap in addressing the privacy
risks associated with data transformation, particularly when
sensitive information is embedded within the datasets. Our
work aims to bridge this gap by introducing privacy-
preserving mechanisms directly into the data reprogramming
process, specifically for cross-disciplinary design innovation.

2.4. Gaps and Our Contribution
Despite notable advances in data-driven design, privacy-

preserving AI, and data reprogramming, there remains no
unified framework that effectively combines these domains
for ethical and efficient cross-disciplinary design.

Existing data-driven design research often overlooks
privacy concerns; privacy-preserving AI methods are
powerful but not yet adapted to the fluid and creative nature
of design processes; and data reprogramming typically
prioritizes performance over ethical considerations.

To address these challenges, we introduce a privacy-
preserving data reprogramming framework that integrates
advanced AI techniques, including information bottleneck
theory, reinforcement learning, and generative modeling, to
balance data utility with privacy. The framework also
provides a systematic approach for creating privacy-aware
feature spaces tailored to diverse design applications,
enabling responsible innovation grounded in data ethics.

3. METHODOLOGY AND SYSTEM DESIGN

This section details our proposed Privacy-Preserving Data
Reprogramming (PDR) framework for cross- disciplinary
design innovation. We first formally define the problem, then
present the overall architecture of PDR, and finally elaborate
on its key components and their functionalities.

3.1. Problem Formulation
Our research problem is to transform an original feature

space, derived from diverse data relevant to design innovation,
into a new feature space. This new space must simultaneously
enhance the performance of downstream design tasks (e.g.,
predictive modeling for user behavior, generative design,
material selection optimization) while rigorously preventing
the exposure of sensitive features. This transformation must
be achieved in a traceable and interpretable manner, ensuring
accountability and transparency in the design process.

Formally, given a dataset: D = {F, s, y} where:

 F represents the original feature set (i.e., feature space),
consisting of a collection of features fi∈ F.

 s denotes a sensitive feature or a set of sensitive
features that involve privacy concerns. These features
are used in the data reprogramming process to guide
privacy preservation but are not directly utilized for the
prediction of downstream design tasks.

 y is the target label or outcome for the downstream
design task (e.g., user satisfaction score, product
success rate, design aesthetic rating).

We aim to construct a new feature space F′ and identify
the optimal one, F*, through a reconstruction process. The
optimization objective can be formulated as follows:

F∗ = \arg\max
F' L A pred F' − λ\cdot L A priv F'

where:

 L(A_pred (F′)) represents the performance metric (e.g.,
accuracy, F1-score, RAE) of a downstream task model
A_pred trained on the reprogrammed feature space F′.
We aim to maximize this utility.

 L(A_priv (F′)) represents the privacy leakage metric
(e.g., prediction accuracy of sensitive features) of a
model A_priv attempting to infer sensitive features
from F′. We aim to minimize this leakage.

 λ is a regularization parameter that balances the trade-
off between maximizing predictive performance and
minimizing privacy leakage. This parameter can be
dynamically adjusted to reflect varying privacy
requirements.

Our framework ensures that the sensitive featuress are not
directly used in the prediction of y, but their influence is
carefully managed during the feature space transformation to
prevent re-identification or inference.

3.2. Framework Overview
Our Privacy-Preserving Data Reprogramming (PDR)

framework is designed as a two-phase process. This
architecture is inspired by the need to first acquire privacy-
aware knowledge and then leverage this knowledge to
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generate an optimized, privacy-preserving feature space. The
two main phases are:

Privacy-Aware Knowledge Acquisition: This phase
focuses on intelligently exploring and collecting diverse sets
of transformed features that exhibit varying degrees of utility
for downstream tasks and privacy leakage. This process is
guided by information bottleneck theory and implemented
using a multi- agent reinforcement learning system.

Privacy-Preserving Feature Space Generation: In this
phase, the acquired privacy-aware knowledge is encoded into
a latent space using generative modeling techniques. Within
this latent representation, we employ dedicated evaluators to
quantify downstream task performance and privacy exposure
risk. An optimization strategy, incorporating progressively
tightening constraints, is then applied to identify the optimal
latent representations, which are subsequently decoded into
the final privacy-preserving feature spaces.

This modular design allows for flexibility and robustness,
enabling the framework to adapt to different design contexts
and privacy requirements. Each component plays a crucial
role in ensuring that the generated feature spaces are both
highly useful for design innovation and rigorously protective
of sensitive information.

3.3. Component Details
This phase is critical for building a comprehensive

knowledge base of feature transformations that balance utility
and privacy. We employ a multi-agent reinforcement learning
(MARL) system, guided by the principles of information
bottleneck (IB) theory [16][17]. The core idea of IB is to find
a compressed representation of the input variable that retains
as much information as possible about the target variable
while discarding irrelevant information. In our context, this
translates to finding feature transformations that maximize
information about the downstream design task (y) while
minimizing information about the sensitive features.

 State Representation: To facilitate the MARL agents'
learning, we represent features and operators in a
machine-processable format. For features, we employ
a descriptive matrix derived from statistical properties
(e.g., mean, variance, entropy) of the original features.
This matrix is then flattened to serve as the state
representation for the agents. Operators (e.g., 'square',
'exp', 'plus', 'multiply', 'normalize') are pre- defined and
represented using one-hot encoding. This allows the
agents to explore a rich space of potential feature
transformations.

 Reinforcement Learning Agents: We utilize a classic
Deep Q-Network (DQN) structure for our MARL
agents. Each agent is responsible for proposing a
sequence of feature transformations. The agents learn
through interaction with the environment, receiving
rewards based on the utility of the transformed features
for the downstream task and penalties for privacy
leakage. The reward function is carefully designed to
incorporate both predictive performance (e.g., F1-
score for classification, RAE for regression) and
privacy preservation (e.g., inverse of sensitive feature
prediction accuracy, or a metric derived from HSIC, as
discussed in [18]). This dual objective guides the
agents towards discovering feature sets that are both
informative and privacy-aware.

 Information Bottleneck Guidance: The IB principle is
integrated into the reward function, encouraging the
agents to learn representations that are maximally
informative about the design task and minimally
informative about sensitive attributes. This is achieved
by optimizing for mutual information: maximizing
I(F ′; Y ) and minimizing I(F ′; S), where F ′ is the
transformed feature set, Y is the target label, and S is
the sensitive feature. This ensures that the acquired
knowledge inherently prioritizes privacy while
maintaining utility.

 Knowledge Base Construction: The sequences of
feature transformations discovered by the MARL
agents, along with their associated utility and privacy
scores, are stored in a knowledge base. This knowledge
base serves as a rich repository of diverse privacy-
aware feature sets, which will be used in the
subsequent generative phase.

3.4. Privacy-Preserving Feature Space Generation
This phase leverages the knowledge acquired in the first

phase to generate optimal privacy-preserving feature spaces.
It involves encoding the knowledge into a latent space,
evaluating potential feature sets, and optimizing for the best
representation.

 Generative Model: We employ a generative model,
such as a Variational Autoencoder (VAE) or
Generative Adversarial Network (GAN), to learn the
underlying distribution of the privacy-aware feature
sets from the knowledge base. The generative model
encodes the sequences of transformed features into a
continuous latent space. This latent space allows for
smooth interpolation and exploration of new, unseen
feature combinations that adhere to the learned
privacy-utility trade-off.

 Dedicated Evaluators: Within the latent space, two
dedicated evaluators are employed: one for
downstream task performance (Apred) and another for
privacy exposure risk (Apriv). These evaluators, pre-
trained on the knowledge base, provide real-time
feedback on the utility and privacy implications of any
point in the latent space. This allows for efficient
navigation and optimization within the latent
representation.

 Progressively Tightening Constraint-Based
Optimization: To identify the optimal latent
representation, we utilize a progressively tightening
constraint-based optimization strategy. This approach
treats downstream task performance as the primary
optimization objective and privacy as an increasingly
strict constraint. Initially, the privacy constraint is
relaxed, allowing the model to explore a broader range
of feature sets. As the optimization progresses, the
privacy constraint is gradually tightened, forcing the
model to converge towards solutions that offer higher
privacy protection without significant degradation in
utility. This iterative tightening ensures a robust
balance between the two objectives.

 Feature Set Reconstruction: Once the optimal latent
representation is identified, a sequential decoder
reconstructs the corresponding optimal feature set.
This reconstructed feature set, F ∗ , represents the
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privacy-preserving data representation ready for use in
various cross-disciplinary design innovation tasks. The
entire process ensures that the generated feature spaces
are not only effective for design applications but also
adhere to stringent privacy standards.

4. EXPERIMENTS AND RESULTS

To validate the effectiveness and adaptability of our
Privacy-Preserving Data Reprogramming (PDR) framework,
we conducted extensive experiments on a variety of datasets
relevant to cross-disciplinary design innovation. Given the
sensitive nature of real-world design data and the difficulty in
obtaining publicly available datasets with explicit privacy
labels, we constructed synthetic datasets designed to reflect
the characteristics of design-related challenges, incorporating
both utility-driven features and sensitive attributes. All data
generation procedures and parameters were controlled to
ensure reproducibility. Our experimental setup aims to
demonstrate PDR's ability to balance predictive performance
for design tasks with robust privacy preservation.

4.1. Experimental Setup
Four datasets were used, each representing a specific

domain scenario. The User Experience (UX) Design dataset
was generated to model interaction data for a digital product,
including behavioral and demographic features, to predict user
satisfaction. The Smart City Planning dataset was designed to
capture realistic patterns of urban mobility and energy
consumption to optimize traffic flow and resource allocation.
The Personalized Education Design dataset represented
student learning behaviors and engagement metrics for
predicting academic success. Lastly, the Healthcare Product
Design dataset captured synthetic but statistically realistic
patient records and lifestyle factors to model treatment
efficacy. Each dataset contained 1,000–10,000 instances and
15–50 mixed-type features, ensuring a diverse and scalable
testing environment. Each experiment was repeated five times
with different random seeds, and the results were averaged to
minimize randomness.

4.2. Evaluation Metrics
To assess PDR’s dual objectives, we adopted a multi-

faceted evaluation strategy. Downstream Task Performance
(DT) was measured using F1-scores for classification tasks
and the inverse of the Relative Absolute Error (1-RAE) for
regression tasks, where higher values indicate stronger
predictive capability. Privacy leakage was quantified by

training an auxiliary model to infer sensitive attributes from
reprogrammed data; for this Sensitive Feature Prediction (SF)
metric, lower values correspond to better privacy preservation.
To provide a comprehensive evaluation, we also computed an
average score combining DT and the privacy protection term
(1–SF), defined as Avg = 0.5 × (DT + (1 – SF)), reflecting the
overall trade-off between task utility and privacy.

4.3. Baseline Methods
PDR was compared against a range of existing data

reprogramming and privacy-preserving approaches. Baseline
methods included the unaltered dataset (ORI), random or
exhaustive reprogramming techniques (RDG, ERG),
advanced augmentation strategies (AFAT, NFS, TTG, GRFG,
MOAT), and noise-based perturbation (DP). We also
examined combination methods such as GRFG-DP and
MOAT-DP, which integrate privacy mechanisms into
traditional reprogramming frameworks. Random Forest
models were employed for all downstream tasks to maintain
robustness and minimize variability due to model selection.

4.4. Experimental Results
Across all datasets, PDR consistently demonstrated

superior performance in balancing predictive accuracy and
privacy protection. Tables 1 and 2 summarize the comparative
results for classification and regression tasks, respectively.
PDR achieved the highest average metric scores in all cases,
outperforming the best baseline methods by a clear margin.
For example, in the UX Design dataset, PDR attained an
average score of 0.832, surpassing the best-performing
baseline (MOAT-DP) by a substantial margin.

PDR not only achieved the strongest privacy guarantees,
as reflected in the lowest sensitive feature prediction (SF)
values, but also maintained or improved downstream task
performance (DT). This indicates that privacy preservation
does not necessarily come at the cost of utility. The findings
suggest that the information bottleneck–guided reinforcement
learning mechanism embedded in PDR effectively promotes
generalizable and noise-resistant representations.

Furthermore, layered privacy approaches such as GRFG-
DP andMOAT-DPwere less effective, indicating that privacy
mechanisms added post hoc cannot achieve the same synergy
as PDR’s intrinsically integrated design. These results
underscore the importance of embedding privacy constraints
directly into the feature transformation process.

TABLE I. COMPARISON RESULTS ON DESIGN DATASETS (CLASSIFICATION TASKS)

Dataset Metric ORI RDG ERG AFAT NFS TTG GRFG MOAT DP GRFG- DP MOAT- DP PDR

UX Design DT↑ 0.721 0.755 0.730 0.742 0.760 0.758 0.765 0.770 0.705 0.740 0.750 0.785

SF↓ 0.350 0.280 0.295 0.270 0.265 0.275 0.250 0.240 0.150 0.200 0.180 0.120

Avg↑ 0.685 0.738 0.718 0.736 0.748 0.742 0.758 0.765 0.778 0.770 0.785 0.832

Personalized
Education DT↑ 0.680 0.710 0.695 0.705 0.720 0.715 0.725 0.730 0.670 0.700 0.710 0.745

SF↓ 0.400 0.330 0.350 0.320 0.310 0.325 0.300 0.290 0.180 0.250 0.220 0.150

Avg↑ 0.640 0.690 0.673 0.693 0.705 0.695 0.713 0.720 0.745 0.725 0.745 0.797
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TABLE II. COMPARISON RESULTS ON DESIGN DATASETS (REGRESSION TASKS)

Dataset Metric ORI RDG ERG AFAT NFS TTG GRFG MOAT DP GRFG- DP MOAT- DP PDR

Smart City Planning DT↑ 0.650 0.680 0.665 0.675 0.690 0.685 0.695 0.700 0.630 0.660 0.670 0.715

SF↓ 0.300 0.250 0.270 0.240 0.230 0.260 0.220 0.210 0.100 0.150 0.130 0.080

Avg↑ 0.675 0.715 0.698 0.718 0.730 0.713 0.738 0.745 0.765 0.755 0.770 0.818

Healthcare Product DT↑ 0.700 0.730 0.715 0.725 0.740 0.735 0.745 0.750 0.690 0.720 0.730 0.765

SF↓ 0.380 0.310 0.330 0.300 0.290 0.305 0.280 0.270 0.160 0.230 0.200 0.110

Avg↑ 0.660 0.710 0.693 0.710 0.725 0.715 0.733 0.740 0.765 0.745 0.765 0.827

4.5. Feature Space and Ablation Analyses
To further understand PDR's mechanism, we analyzed the

characteristics of the generated feature spaces. We focused on
the correlation between the reprogrammed

features and both the downstream task label (y) and the
sensitive feature (s). Ideally, reprogrammed features should
have a strong correlation with y and a weak correlation with s.
We calculated the Pearson correlation coefficient for each
feature with y and s and visualized the distribution.

Figure 1. Correlation of Reprogrammed Features with Downstream Task Label and Sensitive Feature

As shown in Figure 1, our analysis reveals that PDR
generates a higher proportion of features that are strongly
correlated with the downstream task label (y) and weakly
correlated with the sensitive feature (s). This confirms that our
information bottleneck-guided approach effectively steers the
feature transformation process towards privacy-aware and
utility-maximizing representations. Compared to baselines,
PDR's generated features exhibit a more desirable distribution,

clustering in regions where I(Fext;Y ) is high and I(Fext;S) is
low.

An ablation study was conducted to evaluate the
contributions of major components within the framework,
including privacy-aware knowledge acquisition, generative
modeling, and constraint optimization. Figure 2 shows that
removing any of these components substantially degrades
performance, confirming their necessity.
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Figure 2. Ablation Study and Sensitivity Analysis

A sensitivity analysis on the trade-off hyperparameter λ
(from Equation 1) demonstrates its controllable effect on
balancing utility and privacy. Increasing λ leads to stricter
privacy preservation (lower SF) but may result in a slight
decrease in downstream task performance (DT), and vice
versa. This tunable behavior allows designers and
practitioners to flexibly adapt PDR to different privacy
requirements and design contexts.

5. ANALYSIS AND DISCUSSION

The experimental outcomes provide compelling evidence
of the effectiveness and adaptability of the PDR framework.
Beyond outperforming all baselines, PDR’s consistent results
suggest a deeper methodological significance: privacy and
utility need not be opposing forces. By embedding privacy
considerations into the data transformation process itself, PDR
enables the construction of data representations that are both
ethically sound and functionally robust.

One noteworthy observation is that PDR’s superior
average metric arises not merely from noise suppression, but
from an implicit regularization effect. By reducing the mutual
information between reprogrammed features and sensitive
attributes, the framework forces the model to discover more
fundamental patterns related to the target task. This leads to
representations that are inherently more generalizable and less
biased by incidental correlations. The correlation analysis
supports this interpretation, as features generated by PDR
exhibit clear separation between task relevance and privacy
sensitivity—a hallmark of effective disentanglement.

The implications of these findings extend well beyond
technical performance. In the context of cross-disciplinary
design innovation, PDR offers a pathway toward ethical and
inclusive data-driven design. By ensuring that privacy is
preserved from the earliest stages of data processing, the
framework facilitates the responsible use of sensitive data in
domains such as healthcare, education, and urban design.
Moreover, by automating the delicate balance between
privacy and utility, PDR allows designers and researchers to
focus more on creativity and less on technical compliance,
aligning with the “privacy-by-design” philosophy
increasingly emphasized in international data governance
frameworks.

Nonetheless, certain limitations remain. The current
experiments rely on datasets, which, while carefully
constructed, may not capture the full complexity of real-world

design data. Future work should extend the evaluation to
large-scale empirical datasets through collaboration with
industry partners under strict ethical guidelines. Additionally,
the computational cost of PDR, particularly during
reinforcement learning–based knowledge acquisition,
warrants further optimization for large-scale deployment.
Finally, enhancing interpretability remains an open challenge;
developing more transparent explanations of the
reprogramming process could empower designers to better
understand and trust the system’s behavior.

6. CONCLUSION

In this paper, we introduced Privacy-Preserving Data
Reprogramming (PDR), a novel framework designed to
address the critical challenge of balancing data utility and
privacy in the context of cross-disciplinary design innovation.
Our framework leverages a two-phase approach: privacy-
aware knowledge acquisition, guided by information
bottleneck theory and multi-agent reinforcement learning, and
privacy-preserving feature space generation, utilizing
generative models and a progressively tightening constraint-
based optimization strategy. This integrated methodology
ensures that sensitive information is rigorously protected
while simultaneously enhancing the predictive power of data
for diverse design tasks.

Through extensive experimentation on datasets
representing various design scenarios, we demonstrated that
PDR consistently outperforms existing baseline methods in
achieving a superior balance between downstream task
performance and privacy preservation. Our analysis revealed
that PDR effectively disentangles utility-relevant information
from privacy-sensitive information, leading to more robust
and generalizable data representations. This capability is
crucial for fostering ethical and effective data-driven design
practices, expanding the scope of usable design data, and
promoting a culture of privacy by design.

While our findings are promising, we acknowledge certain
limitations, particularly regarding the use of datasets and the
computational intensity of the framework. Future work will
focus on validating PDR with real-world, large-scale datasets,
optimizing its scalability, enhancing the interpretability of
generated features, and extending its applicability to various
data modalities beyond structured tabular data. We believe
that PDR represents a significant step forward in enabling
designers and innovators to harness the full potential of data
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in a responsible and ethical manner, paving the way for a new
era of privacy-conscious and data-driven design innovation.
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