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Abstract—In the era of data-driven innovation,
interdisciplinary design increasingly leverages vast datasets to
inform and optimize creative processes. However, the
integration of diverse data often introduces significant
challenges related to data privacy and security. This paper
proposes a novel framework for privacy-preserving cross-
disciplinary design innovation, inspired by the principles of
data reprogramming. We aim to develop a methodology that
enables the effective utilization of sensitive data in design
contexts while rigorously safeguarding individual privacy.
Building on generative modeling principles, our approach
improves data representation by balancing privacy
preservation and feature robustness. We demonstrate how
information bottleneck theory and reinforcement learning can
be integrated to balance predictive power with privacy
preservation, ensuring that design insights are derived from
data without compromising sensitive information. This
framework 1is particularly relevant for applications in
healthcare, smart cities, and personalized education, where
design solutions must be both innovative and ethically sound.
Through extensive experimentation and validation, we show
that our method achieves strong performance in design-related
predictive tasks while effectively mitigating privacy risks,
thereby paving the way for a new generation of privacy-
conscious design methodologies.

Keywords—Cross-disciplinary design, Privacy-preserving,
Data reprogramming, Generative modeling, Information
bottleneck, Reinforcement learning.

1. INTRODUCTION

Recent progress in artificial intelligence (AI) and data
science is reshaping design practices, enabling data-
informed creativity and efficiency. Traditional design
processes that rely on intuition and qualitative reasoning are
now being complemented by data-driven methods, leading
to more informed and user-centered outcomes. This
transition has fostered cross-disciplinary collaboration,
where insights from engineering, business, and cultural
studies converge to generate new products, services, and
systems [1].

However, the growing use of data in design introduces
critical challenges related to privacy and ethics. As design
increasingly engages with personal data, behavioral patterns,
and proprietary information, maintaining data privacy has
become essential. Existing data-driven design approaches
often  emphasize utility and performance while
underestimating privacy concerns, leading to potential data
breaches and loss of user trust. In sensitive fields such as
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healthcare and smart city design, these risks are particularly
acute. Regulations such as the General Data Protection
Regulation (GDPR) highlight the global urgency of
embedding privacy considerations into design practice [2].

This paper proposes a privacy-preserving framework for
data-driven design innovation. Building on the concept of
data reprogramming in data-centric Al, we aim to transform
raw, sensitive design data into privacy-preserving yet useful
representations. Our approach integrates information
bottleneck theory, generative modeling, and multi-agent
reinforcement learning to achieve this balance. We evaluate
the framework across multiple design-related datasets to
demonstrate its adaptability and effectiveness [3].

2. RELATED WORK

2.1.  Data-Driven Design and Innovation

Data-driven design has emerged as a transformative
approach, moving beyond traditional intuition-based
methods to leverage quantitative and qualitative data for
informed decision-making throughout the design process.
Early work focused on using data for user research and
requirements gathering, employing techniques such as
surveys, interviews, and observational studies to understand
user needs and behaviors. More recently, big data analytics
and machine learning have made it possible to analyze
extensive datasets such as user interaction logs, social media
content, and sensor outputs. These methods help designers
identify behavioral patterns, anticipate trends, and tailor
design solutions to individual needs [4]. For instance, in
urban planning, data from smart city sensors can inform the
design of more efficient transportation systems and public
spaces [5]. In product design, consumer data can guide
feature development and market positioning [6]. However,
many of these approaches primarily focus on maximizing
design utility and performance, often with insufficient
attention to the privacy implications of collecting and
processing vast amounts of personal data.

2.2.  Privacy-Preserving Artificial Intelligence

The growing concerns over data privacy have led to a
surge in research on privacy-preserving Al (PPAI). PPAI
aims to develop Al models and systems that can learn from
data without exposing sensitive information [7]. Key
techniques in PPAI include differential privacy,
homomorphic  encryption, and federated learning.
Differential privacy adds carefully calibrated noise to data or
model outputs, providing strong privacy guarantees while
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maintaining data utility [8]. Homomorphic encryption allows
computations to be performed on encrypted data, ensuring
that data remains confidential even during processing [9].
Federated learning enables collaborative model training
across decentralized datasets without sharing raw data, thus
preserving local data privacy [10]. While these techniques
offer robust solutions for privacy protection in Al, their
application in complex, interdisciplinary design contexts,
especially when dealing with diverse data modalities and
dynamic design processes, remains a challenge. Integrating
these methods seamlessly into a data reprogramming
framework for design innovation requires careful
consideration of their computational overhead and impact on
design outcomes.

2.3.  Data Reprogramming and Feature Engineering

Data reprogramming, a core concept in data-centric Al,
focuses on transforming existing data representations to
enhance model performance or adapt data for new tasks [11].
This goes beyond traditional feature engineering, which
often involves manual creation or selection of features, by
employing automated or semi-automated methods to
discover optimal data representations [12]. Techniques such
as neural architecture search, meta- learning, and
reinforcement learning have been applied to data
reprogramming to automatically generate new features or
modify existing ones [13]. For example, in natural language
processing, data reprogramming can involve transforming
text embeddings to improve performance on specific
downstream tasks [14]. In computer vision, it might involve
altering image representations to enhance object recognition
[15]. While these methods have shown promising results in
improving predictive accuracy, most existing data
reprogramming approaches do not explicitly incorporate
privacy considerations. The focus has primarily been on
utility maximization, leaving a critical gap in addressing the
privacy risks associated with data transformation,
particularly when sensitive information is embedded within
the datasets. Our work aims to bridge this gap by introducing
privacy-preserving mechanisms directly into the data
reprogramming process, specifically for cross-disciplinary
design innovation.

2.4.  Gaps and Our Contribution

Despite notable advances in data-driven design, privacy-
preserving Al, and data reprogramming, there remains no
unified framework that effectively combines these domains
for ethical and efficient cross-disciplinary design.

Existing data-driven design research often overlooks
privacy concerns; privacy-preserving Al methods are
powerful but not yet adapted to the fluid and creative nature
of design processes; and data reprogramming typically
prioritizes performance over ethical considerations.

To address these challenges, we introduce a privacy-
preserving data reprogramming framework that integrates
advanced Al techniques, including information bottleneck
theory, reinforcement learning, and generative modeling, to
balance data utility with privacy. The framework also
provides a systematic approach for creating privacy-aware
feature spaces tailored to diverse design applications,
enabling responsible innovation grounded in data ethics.

3. METHODOLOGY AND SYSTEM DESIGN

This section details our proposed Privacy-Preserving
Data Reprogramming (PDR) framework for cross-
disciplinary design innovation. We first formally define the
problem, then present the overall architecture of PDR, and

finally elaborate on its
functionalities.

key components and their

3.1. Problem Formulation

Our research problem is to transform an original feature
space, derived from diverse data relevant to design
innovation, into a new feature space. This new space must
simultaneously enhance the performance of downstream
design tasks (e.g., predictive modeling for user behavior,
generative design, material selection optimization) while
rigorously preventing the exposure of sensitive features. This
transformation must be achieved in a traceable and
interpretable  manner, ensuring accountability and
transparency in the design process.

Formally, given a dataset: D = {F, s, y} where:

F represents the original feature set (i.e., feature
space), consisting of a collection of features fi € F.

s denotes a sensitive feature or a set of sensitive
features that involve privacy concerns. These features
are used in the data reprogramming process to guide
privacy preservation but are not directly utilized for
the prediction of downstream design tasks.

y is the target label or outcome for the downstream
design task (e.g., user satisfaction score, product
success rate, design aesthetic rating).

We aim to construct a new feature space F' and identify
the optimal one, F*, through a reconstruction process. The
optimization objective can be formulated as follows:

F'=\arg\max (1)

(7) ( I (A{pred} (F,)> ~ Nedot L (A i ﬁ)))

where:

L(A _pred (F')) represents the performance metric
(e.g., accuracy, Fl-score, RAE) of a downstream task
model A pred trained on the reprogrammed feature
space F'. We aim to maximize this utility.

L(A_priv (F")) represents the privacy leakage metric
(e.g., prediction accuracy of sensitive features) of a
model A priv attempting to infer sensitive features
from F’. We aim to minimize this leakage.

A is a regularization parameter that balances the trade-
off between maximizing predictive performance and
minimizing privacy leakage. This parameter can be
dynamically adjusted to reflect varying privacy
requirements.

Our framework ensures that the sensitive featuress are
not directly used in the prediction of y, but their influence is
carefully managed during the feature space transformation to
prevent re-identification or inference.

3.2.  Framework Overview

Our Privacy-Preserving Data Reprogramming (PDR)
framework is designed as a two-phase process. This
architecture is inspired by the need to first acquire privacy-
aware knowledge and then leverage this knowledge to
generate an optimized, privacy-preserving feature space. The
two main phases are:

Privacy-Aware Knowledge Acquisition: This phase
focuses on intelligently exploring and collecting diverse sets
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of transformed features that exhibit varying degrees of utility
for downstream tasks and privacy leakage. This process is
guided by information bottleneck theory and implemented
using a multi- agent reinforcement learning system.

Privacy-Preserving Feature Space Generation: In this
phase, the acquired privacy-aware knowledge is encoded
into a latent space using generative modeling techniques.
Within this latent representation, we employ dedicated
evaluators to quantify downstream task performance and
privacy exposure risk. An optimization = strategy,
incorporating progressively tightening constraints, is then
applied to identify the optimal latent representations, which
are subsequently decoded into the final privacy-preserving
feature spaces.

This modular design allows for flexibility and robustness,
enabling the framework to adapt to different design contexts
and privacy requirements. Each component plays a crucial
role in ensuring that the generated feature spaces are both
highly useful for design innovation and rigorously protective
of sensitive information.

3.3.  Component Details

This phase is critical for building a comprehensive
knowledge base of feature transformations that balance
utility and privacy. We employ a multi-agent reinforcement
learning (MARL) system, guided by the principles of
information bottleneck (IB) theory [16][17]. The core idea of
IB is to find a compressed representation of the input
variable that retains as much information as possible about
the target variable while discarding irrelevant information. In
our context, this translates to finding feature transformations
that maximize information about the downstream design task
(y) while minimizing information about the sensitive features.

State Representation: To facilitate the MARL agents'
learning, we represent features and operators in a
machine-processable format. For features, we employ
a descriptive matrix derived from statistical properties

(e.g., mean, variance, entropy) of the original features.

This matrix is then flattened to serve as the state
representation for the agents. Operators (e.g., 'square’,
'exp', 'plus', 'multiply', 'normalize') are pre- defined
and represented using one-hot encoding. This allows
the agents to explore a rich space of potential feature
transformations.

Reinforcement Learning Agents: We utilize a classic
Deep Q-Network (DQN) structure for our MARL
agents. Each agent is responsible for proposing a
sequence of feature transformations. The agents learn
through interaction with the environment, receiving
rewards based on the utility of the transformed
features for the downstream task and penalties for
privacy leakage. The reward function is carefully
designed to incorporate both predictive performance
(e.g., Fl-score for classification, RAE for regression)
and privacy preservation (e.g., inverse of sensitive
feature prediction accuracy, or a metric derived from
HSIC, as discussed in [18]). This dual objective
guides the agents towards discovering feature sets
that are both informative and privacy-aware.

Information Bottleneck Guidance: The IB principle is
integrated into the reward function, encouraging the
agents to learn representations that are maximally
informative about the design task and minimally

informative about sensitive attributes. This is
achieved by optimizing for mutual information:
maximizing I(F '; Y ) and minimizing I(F ’; S), where
F ' is the transformed feature set, Y is the target label,
and S is the sensitive feature. This ensures that the
acquired knowledge inherently prioritizes privacy
while maintaining utility.

Knowledge Base Construction: The sequences of
feature transformations discovered by the MARL
agents, along with their associated utility and privacy
scores, are stored in a knowledge base. This
knowledge base serves as a rich repository of diverse
privacy-aware feature sets, which will be used in the
subsequent generative phase.

3.4.  Privacy-Preserving Feature Space Generation

This phase leverages the knowledge acquired in the first
phase to generate optimal privacy-preserving feature spaces.
It involves encoding the knowledge into a latent space,
evaluating potential feature sets, and optimizing for the best
representation.

Generative Model: We employ a generative model,
such as a Variational Autoencoder (VAE) or
Generative Adversarial Network (GAN), to learn the
underlying distribution of the privacy-aware feature
sets from the knowledge base. The generative model
encodes the sequences of transformed features into a
continuous latent space. This latent space allows for
smooth interpolation and exploration of new, unseen
feature combinations that adhere to the learned
privacy-utility trade-off.

Dedicated Evaluators: Within the latent space, two
dedicated evaluators are employed: one for
downstream task performance (Apred) and another
for privacy exposure risk (Apriv). These evaluators,
pre-trained on the knowledge base, provide real-time
feedback on the utility and privacy implications of
any point in the latent space. This allows for efficient

navigation and optimization within the latent
representation.
Progressively Tightening Constraint-Based

Optimization: To identify the optimal latent
representation, we utilize a progressively tightening
constraint-based optimization strategy. This approach
treats downstream task performance as the primary
optimization objective and privacy as an increasingly
strict constraint. Initially, the privacy constraint is
relaxed, allowing the model to explore a broader
range of feature sets. As the optimization progresses,
the privacy constraint is gradually tightened, forcing
the model to converge towards solutions that offer
higher privacy protection without significant
degradation in utility. This iterative tightening
ensures a robust balance between the two objectives.

Feature Set Reconstruction: Once the optimal latent
representation is identified, a sequential decoder
reconstructs the corresponding optimal feature set.

This reconstructed feature set, F *, represents the

privacy-preserving data representation ready for use
in various cross-disciplinary design innovation tasks.
The entire process ensures that the generated feature
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spaces are not only effective for design applications
but also adhere to stringent privacy standards.

4. EXPERIMENTS AND RESULTS

To validate the effectiveness and adaptability of our
Privacy-Preserving Data Reprogramming (PDR) framework,
we conducted extensive experiments on a variety of datasets
relevant to cross-disciplinary design innovation. Given the
sensitive nature of real-world design data and the difficulty
in obtaining publicly available datasets with explicit privacy
labels, we constructed synthetic datasets designed to reflect
the characteristics of design-related challenges, incorporating
both utility-driven features and sensitive attributes. All data
generation procedures and parameters were controlled to
ensure reproducibility. Our experimental setup aims to
demonstrate PDR's ability to balance predictive performance
for design tasks with robust privacy preservation.

4.1. Experimental Setup

Four datasets were used, each representing a specific
domain scenario. The User Experience (UX) Design dataset
was generated to model interaction data for a digital product,
including behavioral and demographic features, to predict
user satisfaction. The Smart City Planning dataset was
designed to capture realistic patterns of urban mobility and
energy consumption to optimize traffic flow and resource
allocation. The Personalized Education Design dataset
represented student learning behaviors and engagement
metrics for predicting academic success. Lastly, the
Healthcare Product Design dataset captured synthetic but
statistically realistic patient records and lifestyle factors to
model treatment efficacy. Each dataset contained 1,000—
10,000 instances and 15-50 mixed-type features, ensuring a
diverse and scalable testing environment. Each experiment
was repeated five times with different random seeds, and the
results were averaged to minimize randomness.

4.2.  Evaluation Metrics

To assess PDR’s dual objectives, we adopted a multi-
faceted evaluation strategy. Downstream Task Performance
(DT) was measured using F1-scores for classification tasks
and the inverse of the Relative Absolute Error (1-RAE) for
regression tasks, where higher values indicate stronger
predictive capability. Privacy leakage was quantified by
training an auxiliary model to infer sensitive attributes from
reprogrammed data; for this Sensitive Feature Prediction (SF)

preservation. To provide a comprehensive evaluation, we
also computed an average score combining DT and the
privacy protection term (1-SF), defined as Avg = 0.5 x (DT
+ (1 — SF)), reflecting the overall trade-off between task
utility and privacy.

4.3.  Baseline Methods

PDR was compared against a range of existing data
reprogramming and privacy-preserving approaches. Baseline
methods included the unaltered dataset (ORI), random or
exhaustive reprogramming techniques (RDG, ERGQG),
advanced augmentation strategies (AFAT, NFS, TTG,
GRFG, MOAT), and noise-based perturbation (DP). We also
examined combination methods such as GRFG-DP and
MOAT-DP, which integrate privacy mechanisms into
traditional reprogramming frameworks. Random Forest
models were employed for all downstream tasks to maintain
robustness and minimize variability due to model selection.

4.4. Experimental Results

Across all datasets, PDR consistently demonstrated
superior performance in balancing predictive accuracy and
privacy protection. Tables 1 and 2 summarize the
comparative results for classification and regression tasks,
respectively. PDR achieved the highest average metric scores
in all cases, outperforming the best baseline methods by a
clear margin. For example, in the UX Design dataset, PDR
attained an average score of 0.832, surpassing the best-
performing baseline (MOAT-DP) by a substantial margin.

PDR not only achieved the strongest privacy guarantees,
as reflected in the lowest sensitive feature prediction (SF)
values, but also maintained or improved downstream task
performance (DT). This indicates that privacy preservation
does not necessarily come at the cost of utility. The findings
suggest that the  information  bottleneck—guided
reinforcement learning mechanism embedded in PDR
effectively promotes generalizable and noise-resistant
representations.

Furthermore, layered privacy approaches such as GRFG-
DP and MOAT-DP were less effective, indicating that
privacy mechanisms added post hoc cannot achieve the same
synergy as PDR’s intrinsically integrated design. These
results underscore the importance of embedding privacy
constraints directly into the feature transformation process.

metric, lower values correspond to better privacy
TABLE L. COMPARISON RESULTS ON DESIGN DATASETS (CLASSIFICATION TASKS)
Dataset Metric ORI RDG ERG AFAT NFS TTG GRFG MOAT DP GRFG-DP MOAT-DP PDR
UX Design DTt 0721 0.755 0.730 0.742 0.760 0.758 0.765 0.770 0.705  0.740 0.750 0.785
SFl 0350 0280 0295 0270 0265 0275 0250 0240 0.150  0.200 0.180 0.120
Avglt  0.685 0.738 0.718 0.736 0.748 0.742 0.758 0.765 0.778  0.770 0.785 0.832
P gj""“ﬁzed DT? 0680 0710 0.695 0.705 0.720 0.715 0.725 0.730 0.670  0.700 0.710 0.745
ucation
SF| 0400 0330 0350 0320 0310 0325 0300 0290 0.180  0.250 0.220 0.150
Avgt  0.640 0.690 0.673 0.693 0.705 0.695 0.713 0.720 0.745  0.725 0.745 0.797
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TABLE II. COMPARISON RESULTS ON DESIGN DATASETS (REGRESSION TASKS)

Dataset Metric ORI RDG ERG AFAT NFS TTG GRFG MOAT DP  GRFG-DP MOAT-DP  PDR
Smart City Planning — pra 0650 0680 0.665 0.675 0.690 0.685 0.695 0700 0.630  0.660 0.670 0.715
SFl 0300 0250 0270 0240 0230 0260 0220 0210 0100  0.150 0.130 0.080

Avgl 0675 0715 0.698 0718 0730 0713 0738 0745 0765  0.755 0.770 0.818

Healtheare Product DT{ 0700 0.730 0715 0725 0740 0735 0745 0750 0.690  0.720 0.730 0.765
SFl 0380 0310 0330 0300 0290 0305 0280 0270 0.60 0230 0.200 0.110

Avgl 0.660 0710 0.693 0710 0.725 0715 0733 0740 0765  0.745 0.765 0.827

features and both the downstream task label (y) and the
sensitive feature (s). Ideally, reprogrammed features should
have a strong correlation with y and a weak correlation with
s. We calculated the Pearson correlation coefficient for each
feature with y and s and visualized the distribution.

4.5.  Feature Space and Ablation Analyses

To further understand PDR's mechanism, we analyzed
the characteristics of the generated feature spaces. We
focused on the correlation between the reprogrammed
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Fig. 1. Correlation of Reprogrammed Features with Downstream Task Label and Sensitive Feature

As shown in Figure 1, our analysis reveals that PDR
generates a higher proportion of features that are strongly
correlated with the downstream task label (y) and weakly
correlated with the sensitive feature (s). This confirms that
our information bottleneck-guided approach -effectively
steers the feature transformation process towards privacy-
aware and utility-maximizing representations. Compared to
baselines, PDR's generated features exhibit a more desirable

distribution, clustering in regions where I(Fext;Y ) is high
and I(Fext;S) is low.

An ablation study was conducted to evaluate the
contributions of major components within the framework,
including privacy-aware knowledge acquisition, generative
modeling, and constraint optimization. Figure 2 shows that
removing any of these components substantially degrades
performance, confirming their necessity.
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Ablation Study
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Fig. 2. Ablation Study and Sensitivity Analysis

A sensitivity analysis on the trade-off hyperparameter A
(from Equation 1) demonstrates its controllable effect on
balancing utility and privacy. Increasing A leads to stricter
privacy preservation (lower SF) but may result in a slight
decrease in downstream task performance (DT), and vice
versa. This tunable behavior allows designers and
practitioners to flexibly adapt PDR to different privacy
requirements and design contexts.

5. ANALYSIS AND DISCUSSION

The experimental outcomes provide compelling evidence
of the effectiveness and adaptability of the PDR framework.
Beyond outperforming all baselines, PDR’s consistent results
suggest a deeper methodological significance: privacy and
utility need not be opposing forces. By embedding privacy
considerations into the data transformation process itself,
PDR enables the construction of data representations that are
both ethically sound and functionally robust.

One noteworthy observation is that PDR’s superior
average metric arises not merely from noise suppression, but
from an implicit regularization effect. By reducing the
mutual information between reprogrammed features and
sensitive attributes, the framework forces the model to
discover more fundamental patterns related to the target task.
This leads to representations that are inherently more
generalizable and less biased by incidental correlations. The
correlation analysis supports this interpretation, as features
generated by PDR exhibit clear separation between task
relevance and privacy sensitivity—a hallmark of effective
disentanglement.

The implications of these findings extend well beyond
technical performance. In the context of cross-disciplinary
design innovation, PDR offers a pathway toward ethical and
inclusive data-driven design. By ensuring that privacy is
preserved from the earliest stages of data processing, the
framework facilitates the responsible use of sensitive data in
domains such as healthcare, education, and urban design.
Moreover, by automating the delicate balance between
privacy and utility, PDR allows designers and researchers to
focus more on creativity and less on technical compliance,
aligning with the “privacy-by-design” philosophy
increasingly emphasized in international data governance
frameworks.

Nonetheless, certain limitations remain. The current
experiments rely on datasets, which, while carefully

0.0 T T
0.6 08
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T T
0.2 04

constructed, may not capture the full complexity of real-
world design data. Future work should extend the evaluation
to large-scale empirical datasets through collaboration with
industry partners under strict ethical guidelines. Additionally,
the computational cost of PDR, particularly during
reinforcement  learning—based knowledge acquisition,
warrants further optimization for large-scale deployment.
Finally, enhancing interpretability remains an open challenge;
developing more transparent explanations of the
reprogramming process could empower designers to better
understand and trust the system’s behavior.

6. CONCLUSION

In this paper, we introduced Privacy-Preserving Data
Reprogramming (PDR), a novel framework designed to
address the critical challenge of balancing data utility and
privacy in the context of cross-disciplinary design innovation.
Our framework leverages a two-phase approach: privacy-
aware knowledge acquisition, guided by information
bottleneck theory and multi-agent reinforcement learning,
and privacy-preserving feature space generation, utilizing
generative models and a progressively tightening constraint-
based optimization strategy. This integrated methodology
ensures that sensitive information is rigorously protected
while simultaneously enhancing the predictive power of data
for diverse design tasks.

Through extensive experimentation on datasets
representing various design scenarios, we demonstrated that
PDR consistently outperforms existing baseline methods in
achieving a superior balance between downstream task
performance and privacy preservation. Our analysis revealed
that PDR effectively disentangles utility-relevant information
from privacy-sensitive information, leading to more robust
and generalizable data representations. This capability is
crucial for fostering ethical and effective data-driven design
practices, expanding the scope of usable design data, and
promoting a culture of privacy by design.

While our findings are promising, we acknowledge
certain limitations, particularly regarding the use of datasets
and the computational intensity of the framework. Future
work will focus on validating PDR with real-world, large-
scale datasets, optimizing its scalability, enhancing the
interpretability of generated features, and extending its
applicability to various data modalities beyond structured
tabular data. We believe that PDR represents a significant
step forward in enabling designers and innovators to harness
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the full potential of data in a responsible and ethical manner,
paving the way for a new era of privacy-conscious and data-
driven design innovation.
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