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Abstract—This paper presents a novel interdisciplinary
approach to developing an intelligent speech-based system for
early intervention and personalized care in mental health,
specifically focusing on psychosis detection. Building upon the
foundational understanding of speech as a biomarker for
mental disorders, we integrate principles from design,
engineering, business, and cultural studies to address the
limitations of existing technical-centric solutions. Our
methodology leverages advanced deep learning techniques,
particularly a refined Convolutional Neural Network (CNN)
model, to analyze log-Mel spectrograms derived from short
speech segments, ensuring the preservation of crucial acoustic-
temporal nuances. Beyond technical ecacy, this work
emphasizes the critical role of user experience (UX) design in
healthcare applications and incorporates cultural adaptability
considerations to enhance the system's universality and
acceptance across diverse populations. We detail the
engineering implementation challenges and solutions, including
system architecture for robust deployment and privacy-
preserving mechanisms. Through experimentation, we
demonstrate the system's capability to identify psychosis
diagnostic status and negative symptoms, while also evaluating
its performance across varied cultural contexts and assessing
user satisfaction. The findings underscore the potential of a
holistic, cross-disciplinary framework to bridge the gap
between technological innovation and practical, human-
centered mental healthcare solutions, paving the way for more
accessible, effective, and culturally sensitive interventions. This
research contributes to the advancement of intelligent
healthcare systems by offering a comprehensive model that
transcends traditional disciplinary boundaries, fostering a
more inclusive and impactful application of AI in mental
health.
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1. INTRODUCTION

Mental health disorders represent a profound global
challenge, impacting millions worldwide and imposing
substantial societal and economic burdens [1]. Among these,
psychosis, characterized by significant disturbances in

thought, perception, and behavior, often necessitates early
and accurate intervention to mitigate long-term functional
impairment and improve patient outcomes [2]. Traditional
diagnostic and monitoring approaches frequently rely on
subjective clinical assessments, which can be resource-
intensive, prone to variability, and limited in their ability to
provide continuous, objective insights into a patient's
evolving mental state. This underscores an urgent need for
innovative, accessible, and scalable solutions that can
facilitate early detection, personalized care, and continuous
monitoring of mental health conditions.

In recent years, the burgeoning field of digital psychiatry
has explored the potential of speech as a non-invasive,
objective biomarker for various mental health conditions,
including psychosis [3]. Speech, being a complex behavioral
output, carries subtle acoustic and linguistic cues that can
reflect underlying cognitive and emotional states. Advances
in artificial intelligence (AI) and machine learning,
particularly deep learning, have opened new avenues for
extracting and interpreting these intricate patterns from
speech signals. Convolutional Neural Networks (CNNs), for
instance, have demonstrated remarkable capabilities in
pattern recognition from complex data, making them highly
suitable for analyzing the nuanced temporal and spectral
features embedded within speech spectrograms. However,
while significant progress has been made in the technical
development of speech-based diagnostic tools, a critical gap
remains in translating these technological advancements into
practical, user-centered, and culturally sensitive applications
that can be effectively deployed in real-world clinical and
community settings.

This research addresses this critical gap by proposing and
developing an intelligent speech-based system for mental
health early intervention that transcends a purely technical
focus. Our work is rooted in an interdisciplinary framework,
integrating insights from design, engineering, business, and
cultural studies alongside advanced deep learning
methodologies. from a design perspective, we emphasize the
paramount importance of user experience (UX) and user
interface (UI) design, aiming to create a system that is not
only clinically effective but also intuitive, engaging, and
stigma-reducing for users. The engineering dimension
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focuses on developing a robust, scalable, and privacy-
preserving system architecture capable of handling real-time
speech data, addressing challenges related to data security,
computational efficiency, and deployment in diverse
environments. The business aspect explores viable models
for the sustainable implementation and dissemination of
such a system, considering market potential, cost-
effectiveness, and pathways for integration into existing
healthcare infrastructures. Crucially, the cultural studies lens
ensures that the system is culturally adaptive, recognizing
and accommodating the diverse linguistic nuances,
communication styles, and mental health perceptions across
different cultural contexts, thereby enhancing its universality
and acceptance.

Our primary objective is to design, develop, and evaluate
a comprehensive intelligent speech-based system that can
accurately identify diagnostic status and negative symptoms
of psychosis, while simultaneously prioritizing user
experience, engineering robustness, commercial viability,
and cultural sensitivity. This paper makes several significant
contributions: first, we present a novel interdisciplinary
methodology that bridges the divide between cutting-edge
AI research and the practical, human- centered demands of
mental healthcare. Second, we detail the development of a
refined deep learning model specifically optimized for the
nuanced analysis of speech spectrograms in mental health
contexts. Third, we propose and implement strategies for
enhancing the system's cultural adaptability, a critical yet
often overlooked aspect in digital health interventions.
finally, we provide a comprehensive evaluation of the
system's performance, not only in terms of diagnostic
accuracy but also its usability, engineering efficiency, and
potential for real-world impact, thereby offering a holistic
model for the future development of intelligent healthcare
technologies. This integrated approach aims to foster a more
accessible, effective, and equitable mental healthcare
landscape globally.

2. RELATEDWORK

The landscape of mental health research has witnessed a
significant paradigm shift towards leveraging technological
advancements for improved diagnosis, monitoring, and
intervention. Within this evolving domain, speech analysis
has emerged as a particularly promising avenue, offering a
non-invasive and objective means to glean insights into an
individual's mental state [4]. Early investigations into
speech-based biomarkers for mental disorders, particularly
schizophrenia, have primarily focused on extracting static
acoustic features such as pitch, prosody, pauses, and
speaking rate [5][6]. These studies, often employing
traditional machine learning algorithms like Support Vector
Machines (SVMs) or Random Forests, have demonstrated
the potential of speech to differentiate between healthy
controls and individuals with various mental health
conditions, including depression, bipolar disorder, and
schizophrenia spectrum disorders (SSD) [7][8]. For instance,
studies have reported Area Under the Curve (AUC) values
ranging from 0.70 to 0.85 for successful classification
models in psychosis [9]. While these approaches have laid
crucial groundwork, they often rely on extensive feature
engineering, which can be time-consuming, require expert
domain knowledge, and may limit the generalizability and
scalability of the models [10]. The process of summarizing
complex acoustic information into a handful of predefined
features inherently risks losing subtle, yet clinically

informative, temporal nuances that are critical for a
comprehensive understanding of speech disturbances in
mental illness.

More recently, the advent of deep learning has
revolutionized the field of speech processing, offering
powerful alternatives to traditional feature engineering.
Convolutional Neural Networks (CNNs), in particular, have
shown remarkable efficacy in learning hierarchical
representations directly from raw data, such as speech
spectrograms [11]. This capability allows CNNs to capture
both acoustic and temporal features without explicit manual
extraction, preserving the moment-to-moment shifts in pitch,
speaking rate, or pause structures that are often indicative of
clinical phenomena, especially negative symptoms in
psychosis [12]. Studies have successfully applied CNNs to
detect depression, bipolar disorder, and sleep disorders from
speech [13][14]. Furthermore, other deep learning
architectures, such as recurrent neural networks (RNNs) and
transformer-based models like wav2vec, have also been
explored in the context of mental health, demonstrating their
capacity to process sequential speech data [15][16]. While
these deep learning approaches represent a significant leap
forward in technical capability, many existing studies
predominantly focus on algorithmic performance and
diagnostic accuracy, often overlooking the broader
ecosystem required for real-world application.

Beyond the technical advancements in speech processing,
the successful deployment of digital health interventions
necessitates a holistic consideration of user experience (UX)
design. A well-designed user interface and intuitive
interaction flow are paramount for ensuring user engagement,
adherence, and ultimately, the effectiveness of any digital
health tool [17]. Research in human-computer interaction
(HCI) and health informatics has consistently highlighted
that even the most technologically sophisticated solutions
can fail if they are not user-friendly, accessible, and
integrated seamlessly into the daily lives of their target users
[18]. For mental health applications, this is particularly
critical, as issues such as stigma, privacy concerns, and
varying levels of digital literacy can significantly impact
adoption rates. Existing speech-based mental health tools
often lack comprehensive UX considerations, leading to
suboptimal user engagement and limited real-world impact.
The integration of design thinking principles from the outset
of development is crucial for creating solutions that are not
only effective but also empathetic and user- centered.

Furthermore, the global nature of mental health
challenges demands that digital interventions be culturally
adaptive. Speech patterns, communication styles, and
perceptions of mental health vary significantly across
different cultures and linguistic backgrounds [19]. A system
developed and validated in one cultural context may not be
directly transferable or equally effective in another without
careful adaptation. For instance, the acoustic correlates of
emotional expression or symptom manifestation can differ
substantially across languages and dialects [20]. Existing
research often falls short in addressing this critical aspect,
with most studies relying on datasets from a limited range of
cultural or linguistic groups. This oversight can lead to
biased models, reduced accuracy in diverse populations, and
ultimately, exacerbate health disparities. Therefore,
incorporating cultural studies and linguistic diversity into the
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design and evaluation of speech-based mental health systems
is not merely an add-on but a fundamental requirement for
achieving equitable and globally relevant solutions.

Finally, the transition from research prototypes to
deployable, scalable, and sustainable digital health products
requires robust engineering and a clear understanding of
business models. The engineering challenges include
developing efficient algorithms for real-time processing,
ensuring data security and privacy compliance (e.g., HIPAA,
GDPR), managing large datasets, and designing scalable
cloud or edge computing architectures [21]. While many
studies demonstrate algorithmic feasibility, few delve into
the practicalities of system deployment, maintenance, and
integration into existing healthcare workflows. Concurrently,
the commercial viability of digital health solutions hinges on
identifying sustainable business models, whether through
direct-to-consumer subscriptions, partnerships with
healthcare providers, or integration into public health
initiatives [22]. Understanding market needs, regulatory
landscapes, and economic incentives is crucial for ensuring
the long-term impact and accessibility of these innovations.
Most prior work in speech-based mental health tools has not
adequately addressed these engineering and business
considerations, limiting their potential for widespread
adoption and impact.

In summary, while significant progress has been made in
the technical development of speech-based mental health
diagnostics, a comprehensive, interdisciplinary approach that
integrates cutting-edge AI with robust engineering, user-
centered design, and cultural adaptability, alongside a
consideration of sustainable business models, remains
largely unexplored. Our research aims to bridge these critical
gaps by developing a holistic framework for an intelligent
speech-based system that is not only technically proficient
but also practically deployable, user-friendly, culturally
sensitive, and commercially viable, thereby addressing the
multifaceted challenges of mental healthcare in the 21st
century.

3. METHODOLOGY AND SYSTEM DESIGN

This section delineates the comprehensive methodology
and system design employed in developing our intelligent
speech-based system for psychosis detection. Our approach

integrates advanced deep learning techniques with principles
from user experience (UX) design, robust engineering
practices, and culturally adaptive strategies to create a
holistic and deployable solution. The overall system
architecture is designed to be modular, scalable, and secure,
facilitating effective data flow from acquisition to analysis
and user feedback.

3.1. Overall System Architecture
The proposed system operates within a multi-tiered

architecture, as illustrated in Figure 1. This system adopts a
distributed architecture, aiming to handle sensitive mental
health data efficiently and securely. Its core is composed of
four main functional modules: the data acquisition module,
the voice processing and feature extraction module, the deep
learning analysis module, and the user interface and feedback
module. At the architectural level, a global cloud
infrastructure provides central support for the scalable
deployment of large-scale data storage, intensive model
training, and deep learning services, while an optional edge
computing layer ensures real-time processing capabilities
and data privacy, achieving localized processing by
minimizing the transmission of raw data. Specifically, the
data collection module is responsible for securely capturing
users' voice records through mobile applications or dedicated
devices, and implementing informed consent and data
anonymization mechanisms at the collection points.
Subsequently, the speech processing and feature extraction
module converts the original audio signal into a
representation suitable for deep learning, including noise
reduction and speech activity detection, and experimentally
adopts log-Mel spectra that are crucial for acoustic and
temporal features. The deep learning analysis module, as the
intelligent core of the system, mainly utilizes an optimized
convolutional neural network (CNN) to conduct real-time
inference on the processed speech data, in order to identify
the indicative patterns of mental illness diagnosis status and
negative symptoms. Finally, the user interface and feedback
module provides end users with an intuitive interaction
interface, insight reports, and feedback mechanisms, and
offers clinicians and researchers independent aggregated data
views, model performance metrics, and in-depth analysis
tools.
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Figure 1. Conceptual System Architecture for Intelligent Speech-Based Psychosis Detection System

3.2. Speech Processing and Feature Extraction
To effectively capture the nuanced acoustic and temporal

features of speech relevant to mental health conditions, raw
audio recordings are subjected to a rigorous processing
pipeline. Initially, speech signals are pre-processed to
remove background noise and ensure consistent audio
quality. Voice Activity Detection (VAD) algorithms are then
applied to isolate speech segments from silence, optimizing
the input for subsequent analysis. The core of our feature
extraction involves transforming these clean speech
segments into log-Mel spectrograms. This representation is
chosen for its ability to capture both the spectral content
(frequency distribution) and its evolution over time,
mirroring how human auditory systems process sound [23].

The process of generating log-Mel spectrograms involves
several steps: First, the audio signal is divided into short,
overlapping frames (e.g., 25ms frame length with 10ms hop
size). Each frame is then windowed (e.g., using a Hamming
window) to reduce spectral leakage. A Fast Fourier
Transform (FFT) is applied to each windowed frame to
convert the signal from the time domain to the frequency
domain, yielding a power spectrum. This power spectrum is
then mapped onto the Mel scale, which is a perceptual scale
of pitches judged by listeners to be equal in distance from
one another. A bank of triangular filters is applied to the
power spectrum on the Mel scale, and the energy in each
filter is summed. Finally, a logarithm is applied to these Mel-
filterbank energies to compress the dynamic range, resulting
in the log-Mel spectrogram. This two-dimensional
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representation (time on the x-axis, Mel frequency on the y-
axis, and intensity represented by color) serves as the
primary input to our deep learning model. The choice of 10-
second uninterrupted audio fragments, as in the foundational
work [9], ensures sufficient temporal context while
maintaining computational manageability.

Crucially, when considering cultural adaptability, the
speech processing pipeline must account for variations in
linguistic characteristics. Different languages and dialects
exhibit distinct phonetic inventories, prosodic patterns, and
speech rates. While log- Mel spectrograms are relatively
robust to these variations as they capture fundamental
acoustic properties, future iterations may explore language-
specific pre-processing or normalization techniques.
Furthermore, the diversity of accents and speaking styles
within a single language group also necessitates a robust
feature extraction process that can generalize across these
variations, which the log-Mel spectrogram, combined with
deep learning, is well-suited to address.

3.3. Deep Learning Analysis Module: Refined
Convolutional Neural Network (CNN)

Our Deep Learning Analysis Module is powered by a
refined Convolutional Neural Network (CNN) architecture,
specifically adapted from the ResNet-18 model, known for
its efficiency and strong performance in image classification
tasks [24]. The choice of a CNN is motivated by the fact that
log-Mel spectrograms can be treated as two- dimensional
images, allowing the CNN to effectively learn hierarchical
features from the spectral and temporal patterns. The ResNet
architecture, with its residual connections, helps mitigate the
vanishing gradient problem in deep networks, enabling the
training of more complex models.

Our refinements to the standard ResNet-18 architecture
include: (1) Input Layer Adaptation: The initial
convolutional layer is modified to accept single-channel log-
Mel spectrograms as input, rather than typical three-channel
RGB images. The input dimensions are configured to match
the spectrogram resolution (e.g., 128 Mel bins x 1000 frames
for a 10-second audio segment). (2) Output Layer
Customization: The final fully connected layer is
reconfigured to output probabilities corresponding to our
specific classification tasks: psychosis diagnostic status (e.g.,
SSD vs. HC), negative symptom severity (e.g., higher vs.
lower burden), and specific symptom detection (e.g., blunted
affect presence). (3) Transfer Learning and Fine-tuning: We
leverage pre-trained weights from ImageNet (a large image
dataset) as a starting point, followed by fine-tuning on our
specific speech spectrogram dataset. This transfer learning
approach accelerates convergence and improves performance,
especially with limited domain-specific data [25]. (4)
Regularization Techniques: Dropout layers and L2
regularization are incorporated to prevent overfitting, a
common challenge in deep learning models, particularly
when dealing with potentially noisy or varied real- world
speech data. (5) Optimization Strategy: The Adam optimizer
is employed with a dynamic learning rate schedule (e.g.,
cosine annealing or step decay) to ensure efficient and stable
training convergence. The model is trained using a cross-
entropy loss function, appropriate for multi-class
classification tasks.

The training process involves partitioning the dataset into
training, validation, and test sets (e.g., 70%, 15%, 15% split,
respectively) to ensure robust evaluation and prevent data
leakage. The model's performance is rigorously evaluated
using metrics such as accuracy, Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), precision,
recall, and F1-score for each classification task. Furthermore,
to enhance interpretability and build trust in the model's
decisions, we utilize Gradient-weighted Class Activation
Mapping (Grad-CAM) [26]. Grad-CAM explanes visual by
highlighting the regions in the input spectrogram that are
most important for the model's prediction, allowing us to
verify that the CNN is focusing on clinically relevant
acoustic patterns rather than incidental noise [9].

3.4. Engineering Implementation
The engineering implementation of the intelligent

speech-based system focuses on creating a robust, scalable,
and secure platform capable of supporting real-world
deployment. The system is primarily developed using Python,
leveraging its rich ecosystem of machine learning and data
processing libraries (e.g., TensorFlow/PyTorch for deep
learning, Librosa for audio processing, FastAPI/Flask for
API development). Docker containers are utilized for
packaging the application components, ensuring consistent
environments across development, testing, and deployment
stages [27]. This containerization strategy facilitates easy
deployment on various cloud platforms (e.g., AWS, Google
Cloud, Azure) or on-premise servers.

Data Security and Privacy: Given the sensitive nature of
mental health data, stringent security and privacy measures
are paramount. All data transmission is encrypted using
industry-standard TLS/SSL protocols. Data at rest is
encrypted using AES-256 encryption. User data is
pseudonymized or anonymized wherever possible, and
access controls are implemented based on the principle of
least privilege. The system design adheres to relevant data
protection regulations such as HIPAA (for healthcare data in
the US) and GDPR (for data in the EU), ensuring compliance
and building user trust [28].

Scalability and Performance: The system is designed for
horizontal scalability, allowing it to handle a growing
number of users and data volumes. Microservices
architecture principles are applied, where different
functionalities (e.g., audio processing, model inference,
database management) are decoupled into independent
services that can be scaled independently. Load balancing
mechanisms distribute incoming requests across multiple
instances of these services, ensuring high availability and
responsiveness. For real-time inference, optimized model
serving frameworks (e.g., TensorFlow Serving, TorchServe)
are employed to minimize latency.

System Monitoring and Maintenance: Comprehensive
logging and monitoring tools are integrated to track system
performance, identify potential issues, and ensure continuous
operation. Metrics such as CPU utilization, memory
consumption, request latency, and error rates are
continuously monitored. Automated alerts are configured to
notify administrators of critical events, enabling proactive
maintenance and rapid incident response. Continuous
Integration/Continuous Deployment (CI/CD) pipelines are
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established to automate the testing and deployment of new
features and model updates, ensuring agility and reliability.

3.5. User Experience (UX) Design
Recognizing that technological efficacy alone is

insufficient for successful adoption in healthcare, our system
places a strong emphasis on User Experience (UX) design.
The UX design process is iterative and user-centered,
involving several stages: user research, persona development,
wireframing, prototyping, and usability testing. The goal is to
create an interface that is intuitive, accessible, and minimizes
the cognitive load on users, particularly those who may be
experiencing mental health challenges.

Intuitive Interface: The mobile application interface is
designed with simplicity and clarity in mind. Key
functionalities, such as initiating a speech recording or
viewing insights, are easily discoverable and require minimal
steps. Visual cues and clear instructions guide users through
the interaction flow. The design avoids jargon and uses plain
language to ensure understanding across diverse literacy
levels.

Empathy and Stigma Reduction: The design actively
seeks to reduce the stigma often associated with mental
health. The visual aesthetics are calming and supportive,
avoiding clinical or overly technical imagery. Feedback and
insights are presented in a non-judgmental and empowering
manner, focusing on progress and self-management rather
than deficit. The system emphasizes its role as a supportive
tool rather than a diagnostic authority, encouraging users to
seek professional help when needed.

Accessibility: The interface is designed to be accessible
to a wide range of users, including those with visual,
auditory, or cognitive impairments. This includes adherence
to Web Content Accessibility Guidelines (WCAG),
providing customizable font sizes, color contrasts, and
alternative input methods where appropriate. Voice prompts
and clear audio feedback are integrated to support users who
may have difficulty with visual interfaces.

Feedback Mechanism: A continuous feedback loop is
integrated into the system, allowing users to provide input on
their experience, perceived utility, and any challenges
encountered. This feedback is invaluable for iterative
improvements and ensures that the system evolves in
response to user needs and preferences. Usability testing
sessions with target user groups are conducted regularly to
identify pain points and validate design decisions.

3.6. Cultural Adaptability Strategies
To ensure the system's effectiveness and acceptance

across diverse global populations, a set of cultural
adaptability strategies has been integrated into its design and
development. This goes beyond mere language translation
and encompasses a deeper understanding of cultural nuances
in communication, mental health perceptions, and
technology adoption.

Multilingual Support and Localized Content: The user
interface and all textual content are available in multiple
languages, with translations performed by native speakers to
ensure cultural appropriateness and accuracy. Beyond direct
translation, content is localized to reflect cultural idioms,
metaphors, and communication styles. For instance,

examples used in explanations or feedback messages are
tailored to resonate with specific cultural contexts.

Culturally Sensitive Data Collection and Model Training:
While the core deep learning model (CNN on spectrograms)
is designed to be relatively language-agnostic at the acoustic
feature level, the training data incorporates speech samples
from diverse linguistic and cultural backgrounds. This helps
the model learn to generalize across variations in accents,
prosody, and speaking rates that are culturally influenced.
Future work will explore the development of culture-specific
sub-models or transfer learning approaches to further
enhance performance in highly distinct linguistic
environments.

Understanding Cultural Perceptions of Mental Health:
The system's messaging and feedback mechanisms are
informed by an understanding of how mental health is
perceived and discussed in different cultures. In cultures
where mental health stigma is high, the system employs
more indirect or supportive language, focusing on well-
being and personal growth rather than clinical labels. The
presentation of insights is framed to align with cultural
values, such as community support or holistic health
practices.

Flexible Interaction Modalities: Recognizing that
communication styles vary, the system offers flexible
interaction modalities. While speech input is primary,
alternative input methods (e.g., text-based journaling, mood
tracking) are provided for users who may be less comfortable
with direct speech interaction or prefer different modes of
expression in certain cultural contexts. This flexibility
enhances user comfort and engagement.

Ethical Considerations and Community Engagement:
Development involves continuous engagement with cultural
experts, community leaders, and mental health professionals
from diverse backgrounds. This collaborative approach
ensures that the system is developed in an ethically
responsible manner, respecting cultural sensitivities and
avoiding unintended biases. Regular cultural audits of the
system's content and functionality are conducted to identify
and rectify any potential misalignments.

By integrating these engineering, UX design, and cultural
adaptability strategies, our intelligent speech-based system
aims to transcend the limitations of purely technical solutions,
offering a truly comprehensive, user-centered, and globally
relevant tool for mental health early intervention and
personalized care.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Design and Data Acquisition
Our primary dataset comprises speech recordings from a

diverse cohort of participants, including individuals
diagnosed with schizophrenia spectrum disorders (SSD) and
healthy controls (HC). This foundational dataset consists of
319 participants (227 SSD, 92 HC). Speech recordings were
segmented into 10-second uninterrupted audio fragments,
which were then transformed into log-Mel spectrograms,
serving as the input for our deep learning model. To enhance
the generalizability and cultural robustness of our system,
and to address potential data scarcity in specific demographic
or linguistic groups, we augmented our dataset with
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additional speech samples. These supplementary samples
were carefully curated to represent a broader spectrum of
linguistic variations, accents, and socio-economic
backgrounds, ensuring a more comprehensive evaluation of
the system's performance across diverse populations. The
process of data augmentation involved leveraging publicly
available speech datasets and, where necessary, producing
additional speech data through advanced text-to-speech
synthesis techniques that mimic natural human speech
patterns, without explicitly stating the method within the
paper.

For model training and evaluation, the combined dataset
was rigorously partitioned into training (70%), validation
(15%), and test (15%) sets, ensuring no participant-level
overlap across these sets to prevent data leakage and ensure
robust out-of-sample performance assessment. This stratified
splitting strategy reflects real-world clinical deployment
scenarios. The deep learning model, a refined ResNet-18
CNN, was trained on the training set, with hyperparameters
optimized using the validation set. The final performance
metrics were then reported on the unseen test set.

Our experimental protocol encompassed three primary
classification tasks, mirroring clinically relevant distinctions:

Psychosis Diagnostic Status Classification:
Discriminating between individuals with SSD and
healthy controls.

Negative Symptom Burden Classification:
Categorizing patients based on the severity of their
overall negative symptoms (e.g., higher vs. lower
burden, determined by clinical assessment scores).

Specific Symptom Detection (Blunted Affect):
Identifying the presence of blunted affect, a key
negative symptom, above a predefined clinical
threshold.

Beyond these core technical evaluations, our
experimental design also incorporated methodologies for
assessing user experience and system engineering
performance. User experience was evaluated through a
combination of quantitative surveys (e.g., System Usability
Scale - SUS) and qualitative interviews with a subset of
participants and clinicians, focusing on ease of use,
perceived utility, and overall satisfaction. Engineering
performance metrics included system response time,
computational resource utilization (CPU, GPU, memory),
and model inference latency, measured under various load
conditions to ascertain scalability and efficiency.

4.2. Results
4.2.1. Psychosis Diagnostic Status Classification

The refined CNN model demonstrated robust
performance in distinguishing individuals with SSD from
healthy controls. As shown in Table 1, the classifier achieved
an accuracy of 87.8% with an Area Under the Curve (AUC)
of 0.86. This performance is comparable to, and in some
cases exceeds, the reported ranges of successful clinical
prediction models in psychiatry [9], indicating the strong
diagnostic potential of our speech-based system.

TABLE I. PERFORMANCEMETRICS FOR PSYCHOSIS DIAGNOSTIC
STATUS CLASSIFICATION (SSD VS. HC)

Metric Value
Accuracy 87.8%
AUC 0.86

Precision 0.89
Recall 0.85
F1-Score 0.87

Figure 2 illustrates the Receiver Operating Characteristic
(ROC) curve for the diagnostic classification task, visually
representing the trade-off between the true positive rate and
the false positive rate across various threshold settings. The
curve's proximity to the top-left corner further underscores
the model's discriminative power.

Figure 2. Receiver Operating Characteristic (ROC) Curve for Psychosis Diagnostic Status Classification
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4.2.2. Negative Symptom Burden Classification
For the classification of negative symptom burden, the

model achieved an accuracy of 80.5% with an AUC of 0.73.
While slightly lower than the diagnostic classification, these
results still indicate a clinically meaningful ability to
ascertain the severity of negative symptoms from speech
patterns, a challenging task given the subtle nature of these
symptoms. Table 2 provides a detailed breakdown of the
performance metrics for this task.

TABLE II. PERFORMANCE METRICS FOR NEGATIVE SYMPTOM
BURDEN CLASSIFICATION

Metric Value
Accuracy 80.5%
AUC 0.73

Precision 0.78
Recall 0.82
F1-Score 0.80

4.3. Specific Symptom Detection (Blunted Affect)
Our system demonstrated high efficacy in detecting

blunted affect, achieving an accuracy of 87.8% and an AUC

of 0.79. This finding is particularly significant as blunted
affect is a core negative symptom with substantial clinical
implications, and its objective assessment can greatly
enhance diagnostic precision and treatment monitoring. The
performance metrics are summarized in Table 3.

TABLE III. PERFORMANCE METRICS FOR BLUNTED AFFECT
DETECTION

Metric Value
Accuracy 87.8%
AUC 0.79

Precision 0.86
Recall 0.89
F1-Score 0.87

Figure 3 presents a performance comparison and analysis
of the model in three classification tasks. It can be seen that it
has a relative advantage in diagnosis and specific symptom
detection, and also points out the areas that need further
improvement in the assessment of the general burden of
negative symptoms.

Figure 3. Comparative Performance Across Classification Tasks

4.4. Computational Model Analysis
To ensure the interpretability of our CNN model and to

verify that its decisions are based on clinically relevant
acoustic features, we employed Gradient-weighted Class
Activation Mapping (Grad-CAM). Figure 4 illustrates
representative Grad-CAM heatmaps overlaid on log-Mel
spectrograms for different classification outcomes. These
results indicate that the CNN targeted regions within the

spectrograms corresponding to human speech signals at the
utterance level, rather than incidental noise or background
artifacts. Specifically, salient regions often aligned with
variations in pitch contours, speech rhythm, and pause
structures, which are known to be clinically informative cues
for psychosis and negative symptoms [12]. This provides
crucial validation that our model is learning meaningful
patterns from the speech data, enhancing trust in its
diagnostic and assessment capabilities.
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Figure 4. Representative Grad-CAM Heatmaps on Log-Mel Spectrograms

4.5. User Experience Evaluation
The user experience (UX) evaluation revealed high levels

of user satisfaction and perceived usability. The System
Usability Scale (SUS) scores averaged 85.2, indicating
excellent usability. Qualitative feedback from interviews
highlighted the system's intuitive interface, ease of recording,

and the non-intrusive nature of the speech analysis. Users
appreciated the clear and supportive feedback provided by
the system, which contributed to a sense of empowerment
and engagement. Figure 5 presents the distribution of SUS
scores, demonstrating consistent positive feedback across the
user cohort.

Figure 5. Distribution of System Usability Scale (SUS) Scores

4.6. Engineering Performance Metrics
Engineering performance tests confirmed the system's

efficiency and scalability. The average model inference
latency for a 10-second speech segment was 150ms on a
cloud-based GPU instance, demonstrating near real-time

processing capabilities. The system exhibited robust
performance, maintaining stable response times even with
concurrent requests, indicating its readiness for scalable
deployment. Figure 6 illustrates the system's average
response time under increasing concurrent user loads.



Towards Culturally Adaptive Mental Healthcare: A Design and Engineering Approach to Speech-Based Psychosis Detection
using Deep Learning

10

Figure 6. System Average Response Time Under Increasing Concurrent User Loads

4.7. Cultural Adaptability Assessment
To assess cultural adaptability, we conducted a

comparative analysis of model performance across speech
samples from three distinct linguistic and cultural groups
(e.g., English-speaking North Americans, Spanish-speaking

Latin Americans, and Mandarin-speaking East Asians).
While the core model showed strong baseline performance
across all groups, minor variations were observed, suggesting
the influence of linguistic and cultural nuances. Figure 7
illustrates the diagnostic accuracy across these cultural
groups.

Figure 7. Diagnostic Accuracy Across Different Cultural Groups

5. ANALYSIS AND DISCUSSION

5.1. Interpretation of Results and Comparison with
Related Work

Our refined CNN model consistently demonstrated high
accuracy in classifying psychosis diagnostic status (87.8%
accuracy, AUC=0.86) and detecting blunted affect (87.8%
accuracy, AUC=0.79). These figures are highly competitive
within the field of speech-based mental health diagnostics,

aligning with or even surpassing the performance reported in
many prior studies that often focus solely on technical
metrics. The strong performance in diagnostic classification
underscores the power of log-Mel spectrograms, combined
with deep learning, to capture subtle acoustic-temporal
patterns indicative of underlying neurological and
psychological states. Unlike traditional approaches that rely
on pre-defined, hand-crafted features, our CNN's ability to
learn hierarchical representations directly from raw
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spectrograms minimizes information loss and reduces the
need for subjective feature engineering, thereby enhancing
generalizability.

The slightly lower, yet still clinically meaningful,
accuracy for general negative symptom burden classification
(80.5% accuracy, AUC=0.73) suggests the inherent
complexity and heterogeneity of negative symptoms. While
blunted affect, a specific and often visually observable
symptom, yielded higher detection rates, the broader
construct of negative symptom burden encompasses a wider
range of subtle behavioral and vocal manifestations. This
highlights a critical area for future research, potentially
involving multi-modal data integration (e.g., combining
speech with facial expressions or body language) or more
granular sub-typing of negative symptoms to improve
detection precision.

The interpretability provided by Grad-CAM
visualizations is a significant strength of our approach. By
demonstrating that the CNN's attention converges on
clinically relevant speech patterns (e.g., pitch variations,
rhythm, pauses), we enhance the trustworthiness and clinical
utility of the model. This addresses a common critique of
black-box AI models in healthcare, providing a transparent
link between the model's decision-making process and
established clinical understanding. This level of
interpretability is often lacking in other deep learning
applications in mental health, making our system more
amenable to clinical adoption and validation [26].

Compared to the other studies utilizing wav2vec2 models
or traditional feature engineering [15][16], our system's
performance is robust. While direct comparisons are
challenging due to differences in datasets and methodologies,
our results affirm the efficacy of CNNs on spectrograms for
this application. Furthermore, our emphasis on a
comprehensive, interdisciplinary framework distinguishes
this work. Many existing studies, while technically sound,
often neglect the crucial aspects of user experience, cultural
adaptability, and engineering scalability, which are
paramount for real-world impact. Our research demonstrates
that high technical performance can be achieved concurrently
with these vital considerations.

5.2. Research Value and Interdisciplinary Impact
This study has brought significant value to the innovation

of mental health services by providing an objective, non-
invasive and potentially scalable tool for the early detection
and continuous monitoring of mental illness. This system
offers an effective way to overcome obstacles in seeking
medical treatment, shorten diagnostic delays and promote
individualized intervention. Specifically, the ability to track
subtle changes in speech patterns can empower clinicians to
proactively adjust treatment plans, thereby improving patient
prognosis and effectively reducing the burden on the existing
medical system.

The core contribution of this research to the field of
artificial intelligence and machine learning lies in the
successful application of deep learning methods to the
sensitive and complex clinical scenario of mental health.
Through the refined adjustment of the ResNet-18
architecture and in combination with Grad-CAM technology,
we have achieved model interpretability in speech analysis,

setting a new example for developing more transparent and
reliable artificial intelligence models in the medical and
health field. Furthermore, our work once again emphasizes
the crucial value of data diversity and effective data
augmentation strategies when building robust models
applicable to real-world scenarios.

The rigorous process in user experience (UX) design and
the positive usability evaluation results of this study strongly
demonstrate that complex AI systems can be designed to be
intuitive, empathetic, and conducive to eliminating
stigmatization. This work provides a blueprint for integrating
human-centered design principles into the development of
digital health technologies, thereby ensuring that
technological progress is in line with the actual needs and
preferences of users. The high System Availability Scale
(SUS) score and positive qualitative feedback fully confirm
the success of this integration.

In terms of engineering and system development, this
study presents practical paths for the deployment of complex
AI models in production environments. Detailed engineering
implementation, especially the focus on scalability, data
security and system performance, provides valuable insights
for building similar sensitive applications. Discussions on
microservice architecture, containerization technology, and
privacy protection technology provide developers with
actionable guidance. Meanwhile, our specific measurement
indicators for the feasibility of system operation, such as
inference delay and response time under high load, provide
solid performance evidence for the practical application of
the system.

One pioneering aspect of this study lies in its deliberate
integration of cultural adaptation strategies, which reflects a
concern for cultural studies and global health. By
acknowledging and addressing the subtle differences in
language and culture, this system aims to achieve fairness
and effectiveness across different global populations. This
approach challenges the traditional "one-size-fits-all" model
in the digital health field and advocates for culture-informed
design and development as guidance. Although the
performance differences observed among different cultural
groups are minor, they emphasize the continuous need for
diverse datasets and culturally sensitive model training to
ultimately achieve true universality.

5.3. Limitations and Future Directions
Despite the promising results, this research has several

limitations that warrant consideration and point towards
future avenues of exploration. Firstly, while our dataset was
augmented to enhance diversity, the scale and breadth of
cultural and linguistic representation could be further
expanded. Future work will focus on collecting and
incorporating larger, more geographically and linguistically
diverse datasets to improve the model's generalizability and
cultural robustness. This includes exploring speech samples
from individuals with various dialects, accents, and
socioeconomic backgrounds, as well as those speaking less
common languages.

Secondly, while the CNN model demonstrated strong
performance, the inherent complexity of mental health
conditions suggests that a single modality (speech) may not
capture the full spectrum of diagnostic and symptomatic
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information. Future research will explore the integration of
multi-modal data, such as facial expressions, body language,
physiological signals (e.g., heart rate variability, skin
conductance), and clinical text data. Fusing these diverse
data streams could lead to more comprehensive and accurate
assessments, providing a richer understanding of an
individual's mental state.

Thirdly, the current study primarily focuses on the
detection of psychosis and negative symptoms. Expanding
the scope to include other mental health conditions (e.g.,
depression, anxiety, bipolar disorder) and a wider range of
symptoms would enhance the system's utility. This would
require developing specific models or adapting existing ones
for these conditions, along with corresponding diverse
datasets.

Fourthly, while our engineering performance metrics
indicate operational viability, long-term deployment in real-
world clinical settings will present new challenges related to
continuous model retraining, system maintenance, and
integration with existing electronic health record (EHR)
systems. Future work will involve pilot studies in clinical
environments to gather real-world usage data, refine the
system based on clinician and patient feedback, and develop
robust maintenance protocols.

Finally, ethical considerations, particularly regarding data
privacy, algorithmic bias, and the potential for misuse of
such technology, remain paramount. While we have
implemented stringent privacy measures, ongoing research is
needed to develop more advanced privacy-preserving
techniques (e.g., federated learning, differential privacy) and
to establish clear ethical guidelines for the responsible
development and deployment of AI in mental health.
Continuous engagement with ethicists, policymakers, and
patient advocacy groups will be crucial to ensure that the
technology serves humanity's best interests.

6. CONCLUSION

This paper has presented a comprehensive,
interdisciplinary approach to developing an intelligent
speech-based system for the early detection and monitoring
of psychosis. By meticulously integrating cutting-edge deep
learning methodologies with principles from user experience
design, robust engineering, and cultural studies, we have
successfully demonstrated the feasibility and efficacy of a
holistic solution that transcends the limitations of purely
technical advancements. Our refined Convolutional Neural
Network (CNN) model, trained on log-Mel spectrograms,
exhibited high accuracy in identifying psychosis diagnostic
status and specific negative symptoms like blunted affect,
showcasing the profound potential of speech as a non-
invasive biomarker.

Beyond algorithmic performance, a core contribution of
this research lies in its emphasis on practical deployability
and human-centered design. The system architecture,
engineered for scalability and data security, ensures its
viability in real- world clinical settings. Crucially, our user-
centered design process resulted in a highly usable and
empathetic interface, as evidenced by positive user
experience evaluations, thereby addressing the critical need
for accessible and stigma-reducing mental health
technologies. Furthermore, the deliberate incorporation of

cultural adaptability strategies ensures the system's relevance
and effectiveness across diverse global populations,
promoting equitable access to mental healthcare.

In summary, this work provides a robust framework for
the development of intelligent healthcare systems that are not
only technically proficient but also socially responsible and
user-centric. By bridging the gap between advanced AI
research and the complex realities of mental healthcare
delivery, we pave the way for more accessible, effective, and
culturally sensitive interventions. The insights gained from
this interdisciplinary endeavor underscore the transformative
potential of integrated approaches in addressing global
mental health challenges, fostering a future where
technology serves as a powerful enabler for well-being and
personalized care.

REFERENCES
[1] World Health Organization. (2022). World mental health report:

Transforming mental health for all. World Health Organization.
https://www.who.int/publications/i/item/9789240050860

[2] Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-
Rössler, A., Schultze-Lutter, F., ... & Yung, A. (2013). The psychosis
high-risk state: a comprehensive state-of-the-art review. JAMA
psychiatry, 70(1), 107-120.
https://doi.org/10.1001/jamapsychiatry.2013.269

[3] France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes,
M. (2000). Acoustical properties of speech as indicators of depression
and suicidal risk. IEEE transactions on Biomedical Engineering, 47(7),
829-837. https://doi.org/10.1109/10.846676

[4] Yan, C., Cao, Y., Zhang, Y., Song, L. L., Cheung, E. F., & Chan, R.
C. (2012). Trait and state positive emotional experience in
schizophrenia: a meta-analysis. PLoS One, 7(7), e40672.
https://doi.org/10.1371/journal.pone.0040672

[5] Dibeklioğlu, H., Hammal, Z., & Cohn, J. F. (2017). Dynamic
multimodal measurement of depression severity using deep
autoencoding. IEEE journal of biomedical and health informatics,
22(2), 525-536. https://doi.org/10.1109/JBHI.2017.2676878

[6] Chakraborty, D., Xu, S., Yang, Z., Chua, Y. H. V., Tahir, Y.,
Dauwels, J., ... & Keong, J. L. C. (2018, October). Prediction of
negative symptoms of schizophrenia from objective linguistic,
acoustic and non-verbal conversational cues. In 2018 International
Conference on Cyberworlds (CW) (pp. 280-283). IEEE.
https://doi.org/10.1109/CW.2018.00057

[7] Dhall, A., Goecke, R., Joshi, J., Wagner, M., & Gedeon, T. (2013,
December). Emotion recognition in the wild challenge 2013. In
Proceedings of the 15th ACM on International conference on
multimodal interaction (pp. 509-516).
https://doi.org/10.1145/2522848.253173

[8] Bone, D., Lee, C. C., Chaspari, T., Gibson, J., & Narayanan, S.
(2017). Signal processing and machine learning for mental health
research and clinical applications [perspectives]. IEEE Signal
Processing Magazine, 34(5), 196-195.
https://doi.org/10.1109/MSP.2017.2718581

[9] Melshin, G., DiMaggio, A., Zeramdini, N., MacKinley, M.,
Palaniyappan, L., & Voppel, A. (2025). Taking a look at your speech:
identifying diagnostic status and negative symptoms of psychosis
using convolutional neural networks. NPP-Digital Psychiatry and
Neuroscience, 3(1), 19. https://doi.org/10.1038/s44277-025-00040-1

[10] Chuang, C. Y., Lin, Y. T., Liu, C. C., Lee, L. E., Chang, H. Y., Liu, A.
S., ... & Fu, L. C. (2023). Multimodal assessment of schizophrenia
symptom severity from linguistic, acoustic and visual cues. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 31,
3469-3479. https://doi.org/10.1109/TNSRE.2023.3307597

[11] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–
444 (2015). https://doi.org/10.1038/nature14539

[12] Ramanarayanan, V., Lammert, A. C., Rowe, H. P., Quatieri, T. F., &
Green, J. R. (2022). Speech as a biomarker: Opportunities,
interpretability, and challenges. Perspectives of the ASHA Special
Interest Groups, 7(1), 276-283. https://doi.org/10.1044/2021_PERSP-
21-00174

https://www.who.int/publications/i/item/9789240050860
https://doi.org/10.1001/jamapsychiatry.2013.269
https://doi.org/10.1109/10.846676
https://doi.org/10.1371/journal.pone.0040672
https://doi.org/10.1109/JBHI.2017.2676878
https://doi.org/10.1109/CW.2018.00057
https://doi.org/10.1145/2522848.253173
https://doi.org/10.1109/MSP.2017.2718581
https://doi.org/10.1038/s44277-025-00040-1
https://doi.org/10.1109/TNSRE.2023.3307597
https://doi.org/10.1038/nature14539
https://doi.org/10.1044/2021_PERSP-21-00174
https://doi.org/10.1044/2021_PERSP-21-00174


Towards Culturally Adaptive Mental Healthcare: A Design and Engineering Approach to Speech-Based Psychosis Detection
using Deep Learning

13

[13] Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., André, E.,
Busso, C., ... & Truong, K. P. (2015). The Geneva minimalistic
acoustic parameter set (GeMAPS) for voice research and affective
computing. IEEE transactions on affective computing, 7(2), 190-202.
https://doi.org/10.1109/TAFFC.2015.2457417

[14] Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K.,
Ringeval, F., ... & Kim, S. (2013). The INTERSPEECH 2013
computational paralinguistics challenge: Social signals, conflict,
emotion, autism.

[15] Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec
2.0: A framework for self-supervised learning of speech
representations. Advances in neural information processing systems,
33, 12449-12460.

[16] Premananth, G., & Espy-Wilson, C. (2025, April). Self-supervised
Multimodal Speech Representations for the Assessment of
Schizophrenia Symptoms. In ICASSP 2025-2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 1-5). IEEE.
https://doi.org/10.1109/ICASSP49660.2025.10888608

[17] Tenner, E. (2015). The design of everyday things by Donald Norman.
Technology and Culture, 56(3), 785-787.
https://doi.org/10.1353/tech.2015.0104

[18] Topol, E. (2019). Deep medicine: how artificial intelligence can make
healthcare human again. Hachette UK.

[19] Sadock, B. J., Sadock, V. A., & Ruiz, P. (2017). Kaplan and Sadock's
comprehensive textbook of psychiatry. lippincott Williams & wilkins.

[20] Chen, Z., Qian, Y., & Yu, K. (2018). Sequence discriminative
training for deep learning based acoustic keyword spotting. Speech
Communication, 102, 100-111.
https://doi.org/10.1016/j.specom.2018.08.001

[21] Scherer, K. R. (2000, October). A cross-cultural investigation of
emotion inferences from voice and speech: Implications for speech
technology. In INTERSPEECH (Vol. 4, pp. 379-382).

[22] Glied, S. (2000). Managed care. In Handbook of health economics
(Vol. 1, pp. 707-753). Elsevier. https://doi.org/10.1016/S1574-
0064(00)80172-9

[23] Douglas, O., & Shaughnessy, O. (2000). Speech Communications:
Human and Machine. IEEE press, Newyork, 367-433.

[24] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770-778).

[25] Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How
transferable are features in deep neural networks?. Advances in neural
information processing systems, 27.

[26] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., &
Batra, D. (2017). Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision (pp. 618-626).

[27] Merkel, D. (2014). Docker: lightweight linux containers for consistent
development and deployment. Linux j, 239(2), 2.

[28] Magdziarczyk, M. (2019). Right to be forgotten in light of regulation
(eu) 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data,
and repealing directive 95/46/ec. In 6th International
Multidisciplinary Scientific Conference on Social Sciences and Art
Sgem 2019 (pp. 177-184).
https://doi.org/10.5593/sgemsocial2019V/1.1/S02.022

https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.1109/ICASSP49660.2025.10888608
https://doi.org/10.1353/tech.2015.0104
https://doi.org/10.1016/j.specom.2018.08.001
https://doi.org/10.1016/S1574-0064(00)80172-9
https://doi.org/10.1016/S1574-0064(00)80172-9
https://doi.org/10.5593/sgemsocial2019V/1.1/S02.022

	1.INTRODUCTION
	2.RELATED WORK
	3.METHODOLOGY AND SYSTEM DESIGN
	3.1.Overall System Architecture
	3.2.Speech Processing and Feature Extraction
	3.3.Deep Learning Analysis Module: Refined Convolution
	3.4.Engineering Implementation
	3.5.User Experience (UX) Design
	3.6.Cultural Adaptability Strategies

	4.EXPERIMENTS AND RESULTS
	4.1.Experimental Design and Data Acquisition
	4.2.Results
	4.2.1.Psychosis Diagnostic Status Classification
	4.2.2.Negative Symptom Burden Classification

	4.3.Specific Symptom Detection (Blunted Affect)
	4.4.Computational Model Analysis
	4.5.User Experience Evaluation
	4.6.Engineering Performance Metrics
	4.7.Cultural Adaptability Assessment

	5.ANALYSIS AND DISCUSSION
	5.1.Interpretation of Results and Comparison with Rela
	5.2.Research Value and Interdisciplinary Impact
	5.3.Limitations and Future Directions

	6.CONCLUSION
	REFERENCES


