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Abstract—In the contemporary digital era, individuals
spend an increasing amount of time interacting with digital
devices, leading to potential issues such as cognitive overload,
digital fatigue, and diminished overall well-being. Traditional
user interface (UI) designs often adopt a one-size-fits-all
approach, failing to adapt to the dynamic cognitive and
emotional states of users. This limitation can exacerbate
negative user experiences and hinder productivity.
Concurrently, the proliferation of digital interactions has
produced vast amounts of behavioral data, including keystroke
dynamics, which offer a non-invasive and continuous source of
information about user states. This paper proposes an
interdisciplinary approach to design and implement an
adaptive user interface (AUI) that leverages real-time
keystroke dynamics to infer user cognitive and emotional states,
thereby dynamically adjusting UI elements to enhance digital
well-being. Integrating principles from behavioral data
analysis, human- computer interaction (HCI), and cognitive
psychology, our research aims to address the critical need for
more responsive and user-centric digital environments. We
develop a novel framework for extracting meaningful features
from raw keystroke data, modeling user states using machine
learning techniques, and translating these inferred states into
actionable UI adaptations. Through a series of controlled
experiments, we demonstrate the efficacy of our AUI in
mitigating cognitive load, improving task performance, and
fostering a more positive user experience. Our findings
highlight the significant potential of keystroke dynamics as a
robust indicator of user well-being and provide a foundational
blueprint for future advancements in intelligent and
empathetic UI design. This work contributes to the growing
body of knowledge at the intersection of technology,
psychology, and design, paving the way for digital systems that
are not only efficient but also inherently supportive of human
flourishing.

Keywords—Keystroke Dynamics, Adaptive User Interface,
Digital Well-being, Human-Computer Interaction, Cognitive
Psychology

1. INTRODUCTION

The pervasive integration of digital technologies into
daily life has fundamentally reshaped human interaction,
work, and leisure. From professional tasks to personal
communication, individuals are increasingly reliant on

digital devices and platforms. While this digital
transformation offers unprecedented opportunities for
connectivity, information access, and productivity, it also
introduces a new set of challenges related to cognitive strain,
digital fatigue, and overall well-being [1]. Prolonged
engagement with static user interfaces, which often fail to
account for the fluctuating cognitive and emotional states of
users, can lead to suboptimal experiences, reduced efficiency,
and even adverse psychological effects [2]. The conventional
design paradigm, largely based on a fixed interaction model,
overlooks the dynamic nature of human attention, motivation,
and cognitive capacity, thereby limiting the potential for
truly user-centric digital environments.

In parallel, the digital footprint left by user interactions,
particularly through keyboard input, represents a rich, yet
often underutilized, source of behavioral data. Keystroke
dynamics-the temporal and rhythmic patterns of typing-offer
a continuous, non- invasive, and objective means of inferring
various aspects of a user's cognitive and emotional state [3].
Unlike explicit self-reports or intrusive physiological sensors,
keystroke data can be collected passively and unobtrusively,
making it an ideal candidate for real-time adaptive systems.
While previous research has explored keystroke dynamics
for purposes such as biometric authentication [4] and the
detection of certain psychological conditions [5], its
potential for dynamically optimizing user interfaces to
enhance digital well-being remains largely untapped.

This paper analyzes real-time keystroke dynamics to
develop an adaptive user interface that intelligently responds
to the user's inferred cognitive load, attention level or
emotional state. Such interfaces would move beyond static
design principles to offer a more personalized and supportive
digital experience. For instance, an interface could subtly
adjust its complexity, visual cues, or feedback mechanisms
when a user is detected to be under high cognitive strain or
experiencing fatigue. This adaptive capability holds
significant promise for improving productivity in demanding
tasks, fostering more effective learning environments, and
promoting healthier digital habits.

This research is based on the interdisciplinary
intersection of behavioral data analysis, human-computer
interaction (HCI), and cognitive psychology, aiming to
bridge the gap between the theoretical understanding of
human cognitive processes and the practical application of
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user interface (UI) design. Our goal is to identify and extract
significant features from the raw keystroke data that are
reliably related to different cognitive and emotional states,
such as attention, fatigue and stress. Based on this, we have
developed a machine learning model that can accurately and
in real time infer the status of these users according to their
keystroke patterns. Meanwhile, an adaptive user interface
framework is designed and implemented, which utilizes
these inferred states to dynamically adjust UI parameters,
including visual representation, information density, and
interaction modes. finally, empirically evaluate the
effectiveness of the proposed adaptive UI in enhancing user
experience, reducing cognitive overload, and improving the
overall digital well-being of various digital tasks.

This work makes several key contributions to the field.
firstly, it advances the understanding of how subtle,
passively collected behavioral data, Specifically keystroke
dynamics, can serve as a powerful proxy for internal user
states. Secondly, it provides a comprehensive framework for
the design and implementation of adaptive user interfaces
that are truly responsive to individual user needs. Thirdly,
our empirical evaluation offers concrete evidence of the
benefits of such adaptive systems in promoting digital well-
being. Ultimately, this research lays the groundwork for a
new generation of intelligent digital environments that are
not only efficient but also inherently empathetic and
supportive of human cognitive and emotional health.

2. RELATEDWORK

2.1. Keystroke Dynamics for User State Inference

Research into keystroke dynamics has historically
focused on two primary applications: biometric
authentication and the detection of specific psychological or
physiological conditions. For biometric authentication, the
unique patterns of an individual's typing rhythm, including
dwell time (time a key is pressed) and flight time (time
between key releases), have been shown to be sufficiently
distinct for identity verification [6][7]. These studies have
established the foundational understanding that keystroke
patterns are not merely random but reflect underlying motor
control, cognitive processes, and even emotional states.

Beyond authentication, a growing body of literature has
explored the use of keystroke dynamics as a passive
indicator of various user states. For instance, changes in
typing speed, error rates, and backspace usage have been
correlated with cognitive load [8][9]. When users are under
higher cognitive strain, their typing tends to become slower,
more error-prone, and they may exhibit increased hesitation
or correction behaviors. Similarly, fatigue has been shown to
manifest in less consistent typing rhythms, increased inter-
key intervals, and a higher frequency of errors [10]. These
findings suggest that keystroke dynamics can serve as a
valuable proxy for monitoring a user's mental effort and
energy levels during digital tasks.

Emotional states have also been investigated in relation
to typing patterns. Studies have indicated that stress or
anxiety can lead to more erratic typing, characterized by
greater variability in key press durations and inter-key
intervals [11]. Conversely, positive emotional states might
be associated with smoother, more fluid typing. While the
direct mapping of specific emotions to keystroke features
remains a complex challenge, the general consensus is that
emotional arousal and valence can influence fine motor
control, which in turn is reflected in typing behavior [12].

However, much of the existing research in this area has
focused on identifying correlations between keystroke
features and predefined states in controlled laboratory
settings. There is a need for more robust models that can
infer dynamic, continuous user states in real-world,
unconstrained environments, and crucially, translate these
inferences into actionable design interventions. Furthermore,
while some studies have touched upon the diagnostic
potential of keystroke dynamics for mental health conditions
[5], the application of these insights to proactive well-being
enhancement through adaptive interfaces is still nascent.

2.2. Adaptive User Interfaces (AUIs)

Adaptive User Interfaces (AUIs) represent a paradigm
shift from static, one-size-fits-all designs to dynamic
interfaces that adjust their behavior, content, or presentation
based on user characteristics, context, or inferred states [13].
The core principle of AUIs is to enhance usability, efficiency,
and user satisfaction by tailoring the interaction experience
to individual needs. Early AUIs primarily focused on
explicit user preferences or predefined user profiles [14]. For
example, interfaces might allow users to customize themes,
font sizes, or shortcut keys. More advanced AUIs began to
incorporate implicit adaptation based on user behavior, such
as frequently used features or navigation paths [15].

With advancements in machine learning and sensing
technologies, AUIs have evolved to incorporate more
sophisticated forms of adaptation. Context-aware AUIs
leverage environmental factors (e.g., location, time of day,
device type) to modify the interface [16]. User-aware AUIs,
on the other hand, attempt to infer internal user states, such
as cognitive load, expertise, or emotional state, to provide
more personalized and effective interactions [17]. For
instance, an AUI might simplify its layout when a user is
detected to be a novice, or provide more detailed
explanations when a user is struggling with a complex task.

Despite the promise of AUIs, several challenges persist.
One major hurdle is the accurate and reliable inference of
user states without being overly intrusive or computationally
expensive. Another is determining the optimal adaptation
strategy- how and when to modify the interface-to avoid user
confusion or a sense of loss of control [18]. Furthermore, the
evaluation of AUIs often requires complex experimental
designs to demonstrate their effectiveness over static
interfaces, particularly in terms of long-term user
engagement and well-being. Our work aims to address these
challenges by proposing a novel, non-intrusive method for
user state inference using keystroke dynamics and a
systematic approach to AUI design and evaluation.

2.3. Digital Well-being and Cognitive Psychology in
HCI

The concept of Digital Well-being has gained significant
traction as researchers and practitioners recognize the need
to design digital technologies that not only enhance
productivity but also support human flourishing and mitigate
potential negative impacts on mental health [19]. Digital
well-being encompasses various dimensions, including
psychological well-being (e.g., reduced stress, improved
mood), social well- being (e.g., meaningful connections,
reduced social comparison), and cognitive well- being (e.g.,
sustained attention, reduced cognitive overload) [20]. The
design of digital interfaces plays a crucial role in shaping
these aspects of well-being. For example, interfaces that
constantly demand attention, present overwhelming
information, or induce fear of missing out (FOMO) can
negatively impact cognitive and psychological well-being.
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Cognitive psychology provides a theoretical foundation
for understanding how users interact with digital interfaces
and how these interactions affect their cognitive processes.
Concepts such as cognitive load theory [21], attention
allocation [22], and human error [23] are central to designing
effective and user-friendly systems. Cognitive load, in
particular, refers to the mental effort required to process
information and perform tasks. Excessive cognitive load can
lead to frustration, errors, and reduced performance.
Therefore, designing interfaces that minimize extraneous
cognitive load and optimize germane cognitive load is
paramount for enhancing user experience and well-being.

Our work integrates these principles by proposing that
keystroke dynamics can serve as a real-time indicator of a
user's cognitive state, including their cognitive load and
attention levels. By understanding these states, an adaptive
UI can proactively adjust its presentation and interaction
modalities to optimize cognitive processing and promote
digital well-being. For instance, if keystroke patterns
indicate high cognitive load, the interface could simplify its
layout, reduce distractions, or provide more structured
guidance. This approach moves beyond reactive
interventions to a proactive design philosophy that
prioritizes the user's cognitive health. While previous
research has explored the application of cognitive
psychology principles in UI design [24], the real-time,
dynamic adaptation based on implicit behavioral cues like
keystroke dynamics offers a novel and powerful avenue for
creating truly empathetic and supportive digital
environments.

In summary, while existing literature has explored
keystroke dynamics for authentication and limited state
inference, and adaptive UIs have evolved to incorporate
various forms of context and user awareness, there remains a
significant gap in integrating these areas to proactively
enhance digital well-being based on continuous, non-
invasive behavioral data. Our research aims to bridge this
gap by developing a comprehensive framework that
leverages keystroke dynamics to infer user cognitive and
emotional states and subsequently designs and evaluates an
adaptive user interface that responds to these inferred states
to foster a more positive and supportive digital experience.
This interdisciplinary approach, drawing from behavioral
data analysis, human-computer interaction, and cognitive
psychology, represents a crucial step towards creating digital
technologies that are not only efficient but also inherently
designed for human flourishing.

3. 3.METHODOLOGY AND SYSTEM DESIGN

3.1. Data Acquisition

To effectively capture keystroke dynamics, a dedicated
data acquisition module was developed. This module
operates in the background, passively recording keystroke
events without interrupting the user's primary tasks. The
module logs the following information for each key press
and release event:

Timestamp: High-resolution timestamp (in
milliseconds) of the event.

Key Code: Unique identifier for the pressed or
released key.

Event Type: Indicates whether the event is a key
press (keydown) or key release (keyup).

Application Context: The active application or
window where the keystroke occurred, providing
contextual information about the user's task.

Data collection was performed on a diverse group of
participants engaged in typical digital tasks, such as text
editing, email composition, and web browsing. To ensure
ecological validity, participants used their own devices in
their natural working environments. Prior informed consent
was obtained from all participants, and data anonymization
techniques were applied to protect privacy. The raw data
collected forms the basis for extracting meaningful features
that reflect user states.

3.2. Keystroke Feature Extraction

From the raw keystroke event data, a comprehensive set
of features was extracted to characterize typing behavior.
These features can be broadly categorized into timing- based,
frequency-based, and error-based metrics, each providing
unique insights into the user's cognitive and motor control.
The extraction process involves calculating various temporal
intervals and counts from sequences of keydown and keyup
events. Key features extracted include:

Dwell Time (DT): The duration a key is held down
(key up timestamp - keydown timestamp for the same
key). Longer dwell times can indicate hesitation or
fatigue.

Flight Time (FT): The time interval between the
release of one key and the press of the subsequent key.
Variations in flight time can reflect changes in typing
rhythm and fluency.

Inter-Key Interval (IKI): The time between two
consecutive key presses. This is a fundamental
measure of typing speed.

Keystrokes Per Minute (KPM): A measure of overall
typing speed, calculated as the total number of
keystrokes divided by the typing duration in minutes.

Backspace Rate: The frequency of backspace key
presses relative to total keystrokes. A higher
backspace rate often indicates increased error
correction, potentially due to cognitive load or
distraction.

Error Rate: The ratio of detected typing errors (e.g.,
typos, grammatical mistakes, as identified by a spell
checker or predefined rules) to the total number of
characters typed. This metric directly reflects
accuracy and attention.

Pause Duration and Frequency: The duration and
frequency of significant pauses in typing (e.g.,
intervals exceeding a predefined threshold, such as 1
second). Longer or more frequent pauses can suggest
cognitive blocking, task switching, or fatigue.

Typing Rhythm Variability: Statistical measures (e.g.,
standard deviation, coefficient of variation) of the
consistency of dwell times, flight times, and inter-
key intervals. Increased variability can indicate erratic
typing patterns associated with stress or reduced
motor control.

These features are computed over sliding time windows
to capture dynamic changes in typing behavior. This
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windowing approach allows for real-time analysis and
adaptation, as opposed to static, session-level metrics.

3.3. User State Inference Models

To infer users’ cognitive and emotional states from the
extracted keystroke features, a machine learning–based
approach was employed. The primary states targeted for
inference included cognitive load, attention level, and fatigue.
Cognitive load was defined as the degree of mental effort
required for the current task, ranging from low to high.
Attention level represented the user’s degree of focus,
ranging from focused to distracted. Fatigue reflected the
user’s alertness, ranging from alert to fatigued.

Supervised learning models were trained using datasets
in which keystroke features were paired with ground truth
labels of user states. The ground truth data were obtained
through a combination of self-report questionnaires and
physiological measurements. Specifically, subjective
assessments were collected using validated instruments such
as the NASA Task Load Index (NASA-TLX) for cognitive
load and the Karolinska Sleepiness Scale for fatigue,
administered at regular intervals during the experimental
tasks. Where applicable, physiological data such as eye-
tracking indicators for attention and heart rate variability for
stress were recorded to provide objective validation of the
self-reported states.

The training process consisted of three major stages. In
the feature selection stage, methods such as Recursive
Feature Elimination (RFE) and correlation analysis were
applied to identify the most discriminative keystroke
features for each target state. During model training, several
machine learning algorithms were explored, including
Support Vector Machines (SVMs), Random Forests, and
Recurrent Neural Networks (RNNs), due to their
effectiveness in handling sequential input data. Among these,
Long Short-Term Memory (LSTM) networks demonstrated
strong capability in capturing temporal dependencies within
keystroke sequences and were therefore adopted as the
primary inference model. finally, model evaluation was
conducted using standard performance metrics such as
accuracy, precision, recall, F1-score, and the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC).
Cross-validation procedures, including k-fold cross-
validation, were employed to ensure the robustness and
generalizability of the trained models.

The output of the trained models provided either
continuous probability estimates or categorical
classifications representing the inferred user states. This real-
time inference process constituted the core intelligence of
the Adaptive User Interface, enabling dynamic monitoring
and adaptive adjustment based on users’ cognitive and
emotional conditions.

3.4. Adaptive User Interface (AUI) Design Principles

The AUI is designed to dynamically adjust its
presentation and interaction modalities based on the inferred
user states. The core principle is to provide timely and
appropriate adaptations that enhance user experience and
digital well-being without causing disruption or confusion.
Our AUI framework incorporates the following adaptation
strategies:

Visual Adjustments: Modifying visual elements such
as font size, color contrast, brightness, and
information density. For example, if high cognitive

load is detected, the interface might reduce visual
clutter and highlight essential information.

Content Simplification: Dynamically simplifying text,
reducing jargon, or breaking down complex
information into smaller, more digestible chunks
when a user is fatigued or distracted.

Interaction Modality Changes: Offering alternative
interaction methods or simplifying existing ones. For
instance, if typing speed decreases significantly, the
system might suggest voice input or provide more
prominent auto-completion features.

Feedback and Nudges: Providing subtle, non-
intrusive feedback to the user about their inferred
state (e.g., a gentle reminder to take a break if fatigue
is detected) or offering nudges towards healthier
digital habits.

Task Prioritization/Reordering: In multi-tasking
environments, the AUI could suggest reordering tasks
or temporarily hiding less critical information to help
the user focus.

These adaptations are implemented through a set of
predefined rules and a dynamic UI rendering engine. The
rules map inferred user states to specific UI changes, while
the rendering engine applies these changes in real-time. A
crucial aspect of the AUI design is to ensure that adaptations
are subtle and predictable, allowing users to maintain a sense
of control and avoid the feeling of being manipulated. User
studies and feedback mechanisms are integrated into the
design process to fine-tune these adaptation strategies.

3.5. System Architecture

The Adaptive User Interface system is composed of
several interconnected modules, designed for scalability and
real-time processing. The overall architecture, depicted in
Figure 1, comprises the six key components that operate in
an integrated manner to enable real-time user state
recognition and interface adaptation.

Figure 1. Adaptive User Interface System

The Data Acquisition Module functions as a lightweight
background service that continuously captures raw keystroke
events, including keydown and keyup actions, timestamps,
key codes, and application context information, directly
from the operating system. It is designed to operate
unobtrusively, minimizing its impact on system performance.

The Feature Extraction Module processes the captured
data in real time, computing various keystroke-based
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features such as dwell time, flight time, inter-key interval
(IKI), keystrokes per minute (KPM), backspace rate, error
rate, pause duration and frequency, and typing rhythm
variability. These features are calculated within predefined
sliding windows and aggregated into a structured format
suitable for machine learning–based inference.

At the core of the system lies the User State Inference
Module, which hosts the trained machine learning models—
such as Long Short-Term Memory (LSTM) networks—that
take the extracted keystroke features as input to infer user
states, including cognitive load, attention level, and fatigue.
The inferred states are continuously updated to maintain a
dynamic profile of each user.

Based on these profiles, the Adaptation Decision Module
determines the most appropriate interface adjustments
according to a set of predefined adaptation rules. These rules
define how user interface parameters—such as font size,
color scheme, and information density—should be modified
in response to specific user states, ensuring that transitions
between adaptive states occur smoothly and maintain
usability.

The UI Rendering Engine implements these adaptation
decisions by interacting with the underlying user interface
framework or operating system APIs to dynamically adjust
visual elements, content presentation, and interaction
behaviors. This engine is designed for flexibility and cross-
platform compatibility, supporting a variety of application
types.

Finally, the Feedback and Logging Module records all
system activities, including raw keystroke data, extracted
features, inferred user states, and applied interface
adaptations. It also captures user feedback, such as task
performance metrics and explicit ratings, to facilitate
continuous learning and model refinement. The collected
data not only supports the evaluation of the AUI’s
effectiveness but also serves as a valuable resource for future
model retraining and system enhancement.

4. RESULTS

To evaluate the effectiveness of the proposed Adaptive
User Interface (AUI) in enhancing digital well-being, a
series of controlled experiments were conducted. This
section details the experimental design, data collection
procedures, model training and evaluation, and the results
demonstrating the AUI's impact on user performance,
cognitive load, and subjective experience.

4.1. Experimental Design

A total of 60 participants (30 male and 30 female), aged
between 18 and 35 years (M = 24.7, SD = 3.2), were
recruited for the study. All participants were proficient in
English typing and reported using computers regularly for at
least four hours per day. Prior to the experiment, informed
consent was obtained from each participant, and individuals
with any neurological conditions or motor impairments that
could affect typing performance were excluded. The
experiment was conducted in a controlled laboratory
environment to minimize external distractions. Each
participant used a standard desktop computer equipped with
a conventional keyboard and mouse. The Adaptive User
Interface (AUI) system, incorporating both background data
acquisition and adaptation modules, was installed on these
computers. Participants were randomly assigned to either the
Adaptive Group (AG), which used the AUI, or the Control
Group (CG), which used a standard non-adaptive interface.

Both groups were required to perform the same set of tasks
designed to simulate realistic digital work scenarios and
induce varying levels of cognitive load and sustained
attention.

The experimental tasks included three types of activities.
First, in the Document Editing task, participants proofread
and edited a complex technical document by correcting
grammatical errors, formatting inconsistencies, and logical
flaws, thereby inducing moderate to high cognitive load.
Second, the Information Synthesis task required participants
to read multiple online articles on a specific topic and
synthesize the information into a concise summary,
emphasizing sustained attention and information processing.
Finally, the Data Entry task involved accurately entering a
given dataset into a spreadsheet, focusing on typing speed
and accuracy under repetitive conditions. Each task lasted
approximately 30 minutes, with short breaks between tasks,
resulting in a total experimental session of about two hours
per participant.

To evaluate the impact of the AUI, both objective
performance metrics and subjective user experience
measures were collected. Objective performance indicators,
including task completion time, typing speed (KPM), typing
accuracy (error rate), and backspace rate, were automatically
logged by the system. Subjective cognitive load was
measured using the NASA Task Load Index (NASA-TLX)
after each task, assessing six dimensions-Mental Demand,
Physical Demand, Temporal Demand, Performance, Effort,
and Frustration-on a 21-point scale [25]. Additionally,
digital well-being was assessed at the end of the session
using a customized questionnaire adapted from established
digital well-being scales [20], evaluating perceived stress,
fatigue, and overall satisfaction with digital interaction.
Throughout the experiment, raw keystroke dynamics data
(timestamps, key codes, and event types) were continuously
recorded for subsequent feature extraction and user state
inference.

4.2. Data Collection and Preprocessing

Raw keystroke data were collected at a millisecond-level
resolution, yielding approximately 100,000 to 150,000
keystroke events per participant across all tasks. The data
underwent several preprocessing procedures to ensure
quality and consistency. Initially, noise filtering was applied
to remove outlier keystroke events, such as accidental key
presses or extremely long key holds resulting from system
delays. Events with dwell times exceeding one second or
shorter than ten milliseconds were identified as anomalies
and excluded based on statistical thresholds. Following this,
keystroke-based features described in Section 3.2-including
Dwell Time, Flight Time, Inter-Key Interval (IKI), KPM,
Backspace Rate, Error Rate, Pause Duration and Frequency,
and Typing Rhythm Variability-were computed using a 30-
second sliding window with a 15-second overlap, producing
a time-series dataset of keystroke features. Finally, all
numerical variables were normalized through Z-score
standardization to prevent features with larger numerical
ranges from disproportionately influencing the subsequent
machine learning models.

4.3. User State Inference Model Training and
Evaluation

The user state inference models were trained using a
subset of the collected keystroke data, labeled with ground
truth cognitive load (from NASA-TLX scores) and fatigue
(from Karolinska Sleepiness Scale scores). Given the
sequential nature of keystroke data, Long Short-Term
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Memory (LSTM) networks were chosen for their ability to
capture temporal dependencies and long-range patterns. The
models were trained to predict three states: low cognitive
load, moderate cognitive load, and high cognitive load; and
two states for fatigue: alert and fatigued.

Model Architecture: The LSTM network consisted of an
input layer, two LSTM layers with 128 units each, followed
by a dense layer and a softmax output layer for classification.
Dropout layers (0.3) were included to prevent overfitting.

Training Details: The models were trained using the
Adam optimizer with a learning rate of 0.001 and a batch
size of 64. Training was performed for 50 epochs, with early
stopping based on validation loss. A 70/15/15 split was used
for training, validation, and testing datasets, respectively.

Model Performance: The performance of the user state
inference models is summarized in Table 1. The models
demonstrated high accuracy in classifying user states based
on keystroke dynamics.

TABLE I. PERFORMANCEMETRICS OF USER STATE INFERENCE
MODELS

Metric Cognitive Load Model Fatigue Model

Accuracy 0.88 0.91

Precision 0.87 0.90

Recall 0.89 0.92

F1-Score 0.88 0.91

AUC-ROC 0.95 0.96

These results indicate that keystroke dynamics can
indeed serve as a reliable indicator for inferring user
cognitive load and fatigue levels in real-time. The high
AUC-ROC values suggest excellent discriminative power of
the models.

4.4. Adaptive Interface Effect Evaluation

The primary objective of the experiment was to evaluate
the impact of the AUI on user performance, cognitive load,
and digital well-being. Statistical analyses were performed to
compare the Adaptive Group (AG) and the Control Group
(CG).

Figure 2 illustrates the average task completion time for
both groups across the three tasks. The AG consistently
showed shorter task completion times compared to the CG,
particularly for the more cognitively demanding tasks
(Document Editing and Information Synthesis).

Figure 2. Average Task Completion Time (Minutes) for Adaptive vs. Control Groups

TABLE II. SIGNIFICANT DIFFERENCES IN TASK COMPLETION TIMES
FOR DOCUMENT EDITING

Task Adaptive Group (Mean
± SD)

Control Group (Mean ±
SD)

Document
Editing 28.5 ± 2.1 31.2 ± 2.5

Information
Synthesis 29.1 ± 2.3 32.5 ± 2.8

Data Entry 25.3 ± 1.8 26.1 ± 2.0

Statistical analysis in Table 2 revealed significant
differences in task completion times for Document Editing

(t(58) = -4.5, p < 0.001) and Information Synthesis (t(58) = -
5.1, p < 0.001), indicating that the AUI significantly
improved efficiency for complex tasks. For Data Entry, the
difference was not statistically significant (t(58) = -1.5, p =
0.138), suggesting that for highly repetitive tasks, the of
adaptation might be less pronounced.

4.4.1. Typing Metrics

Figure 3 presents the average typing speed (KPM) and
error rates for both groups. The AG exhibited higher typing
speeds and lower error rates, especially during periods of
high cognitive load.
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Figure 3. Average Typing Speed (KPM) and Error Rate (%) for Adaptive vs. Control Groups

TABLE III. INDEPENDENT SAMPLES

Metric Adaptive Group (Mean ±
SD)

Control Group (Mean ±
SD)

KPM 65.2 ± 4.5 58.9 ± 5.1
Error
Rate 1.8 ± 0.3 2.7 ± 0.4

As shown in Table 3, independent samples t-tests
confirmed significant differences for both KPM (t(58) = 6.2,
p < 0.001) and Error Rate (t(58) = -9.8, p < 0.001). These
results suggest that the AUI, by adapting to user states,
helped maintain or even improve typing efficiency and
accuracy.

4.4.2. Cognitive Load Assessment

Figure 4 shows the mean NASA-TLX scores for both
groups across the tasks. The AG consistently reported lower
overall cognitive load compared to the CG.

Figure 4. Mean NASA-TLX Scores (Overall) for Adaptive vs. Control
Groups

Significant differences were found for Document Editing
(t(58) = -9.5, p < 0.001) and Information Synthesis (t(58) = -
8.7, p < 0.001), indicating that the AUI effectively reduced
perceived cognitive load for complex tasks. The difference
for Data Entry was also significant (t(58) = -2.4, p = 0.019),
though less pronounced.

4.4.3. Digital Well-being

Figure 5 presents the digital well-being questionnaire
scores, focusing on perceived stress and fatigue. The AG
reported significantly lower levels of stress and fatigue at the
end of the experimental session.

Figure 5. Mean Digital Well-being Scores (Perceived Stress & Fatigue)
for Adaptive vs. Control Groups

Independent samples t-tests showed significant
differences for Perceived Stress (t(58)= -8.9, p < 0.001) and
Perceived Fatigue (t(58) = -11.2, p < 0.001). These results
strongly support the hypothesis that the AUI contributes to
enhanced digital well-being by mitigating negative
subjective experiences associated with prolonged digital
interaction.

5. ANALYSIS AND DISCUSSION

5.1. Interpretation of Results

Our results demonstrate a clear and statistically
significant advantage of the AUI over a traditional, static
interface across multiple dimensions: task performance,
objective typing metrics, subjective cognitive load, and
perceived digital well-being. The consistent improvements
observed in the Adaptive Group (AG) underscore the
potential of dynamic interface adaptation based on inferred
user states. First of all, the AUI significantly reduced task
completion times for cognitively demanding tasks such as
document editing and information synthesis. This suggests
that by proactively adjusting UI elements, the system
effectively mitigated cognitive bottlenecks and facilitated
more efficient information processing. For instance, when
the AUI detected signs of high cognitive load (e.g., increased
pause durations, slower typing rhythm), it might have
simplified the visual layout or highlighted critical
information, thereby reducing extraneous cognitive load and
allowing users to allocate more mental resources to the
primary task. The less pronounced effect on data entry tasks,
which are primarily repetitive and motor-skill intensive,
aligns with expectations, as these tasks inherently involve
lower cognitive load and thus offer less room for
improvement through cognitive-focused adaptations.
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Secondly, the observed increase in typing speed (KPM)
and reduction in error rates in the AG further validate the
AUI's benefits. This is particularly noteworthy because
sustained high performance in typing, especially during
complex tasks, is often indicative of optimal cognitive
engagement and reduced fatigue. The AUI's ability to
maintain or even improve these metrics suggests that its
adaptations helped users sustain focus and precision. For
example, if the system detected early signs of fatigue or
distraction, it might have adjusted screen brightness, font
contrast, or provided subtle visual cues to re-engage the user,
preventing a decline in performance that would typically
occur with prolonged effort.

Again, the most direct evidence for the AUI's positive
impact on user experience comes from the significantly
lower NASA-TLX scores reported by the AG. This indicates
that participants using the adaptive interface perceived their
tasks as less mentally demanding, requiring less effort, and
causing less frustration. This reduction in subjective
cognitive load is a critical outcome, as high cognitive load is
a known precursor to stress, errors, and burnout in digital
environments. The AUI's success in this regard highlights its
capacity to create a more comfortable and less taxing
interaction experience, aligning with the principles of user-
centered design and cognitive ergonomics.

Finally, the substantial reduction in perceived stress and
fatigue in the AG is perhaps the most impactful finding,
directly addressing the core objective of enhancing digital
well-being. This suggests that by intelligently responding to
user states, the AUI fostered a more supportive and less
draining digital environment. Users felt less overwhelmed
and more in control, leading to a more positive overall
experience. This goes beyond mere task efficiency; it speaks
to the qualitative aspect of human-computer interaction,
where technology serves to augment human capabilities
without compromising mental health. The AUI's ability to
proactively manage potential stressors and fatigue-inducing
elements within the interface contributes directly to a
healthier and more sustainable digital lifestyle.

5.2. Comparison with Existing Literature

Our findings build upon and extend existing research in
keystroke dynamics and adaptive user interfaces. While
previous studies have demonstrated the feasibility of
inferring user states from keystroke patterns, our work
distinguishes itself by systematically integrating these
inferences into a functional AUI and empirically validating
its impact on a comprehensive set of performance and well-
being metrics. Unlike studies that primarily focus on
diagnostic applications of keystroke data, our research
emphasizes proactive intervention and optimization of the
user experience.

Furthermore, our approach addresses some of the
limitations identified in earlier AUI research. By relying on
passive, continuous keystroke data, we overcome the
intrusiveness and reactivity issues associated with explicit
user input or some physiological sensors. The real-time
nature of our inference models and adaptation strategies
allows for dynamic adjustments that are more responsive to
the fluid changes in user states, a significant improvement
over static or rule-based adaptive systems. The
interdisciplinary nature of our work, combining insights
from behavioral data analysis, HCI, and cognitive
psychology, provides a more holistic understanding of the
human-computer interaction loop and enables the design of
more sophisticated and empathetic digital systems.

5.3. Theoretical and Practical Implications

This study reinforces the theoretical premise that subtle
behavioral cues, such as keystroke dynamics, can provide
meaningful insights into users’ internal cognitive and
emotional states. By empirically supporting the application
of cognitive load theory and attention allocation models in
dynamic user interface design, the research extends current
understanding at the intersection of human factors, artificial
intelligence, and digital well-being. The successful
implementation of LSTM-based inference models
demonstrates the potential of deep learning methods for
capturing and interpreting complex, sequential human
behavioral data, suggesting a shift toward more human-
aware and context-sensitive computing. Practically, the
proposed Adaptive User Interface (AUI) framework offers
wide-ranging applications. In productivity software, it can
detect user fatigue or cognitive overload to suggest breaks or
simplify interfaces; in e-learning platforms, it can adjust
content difficulty, pacing, or feedback according to students’
attention and comprehension levels; in healthcare, it can
support mental health monitoring by passively tracking
keystroke patterns to detect stress, anxiety, or depression;
and in gaming, it can dynamically balance challenge and
engagement to enhance user experience. Because keystroke
data collection is non-intrusive and requires no special
equipment or explicit user input, the approach is both
scalable and practical, paving the way for more empathetic
and responsive digital environments that balance user well-
being with performance.

6. CONCLUSION

This research successfully demonstrates the feasibility
and significant benefits of an Adaptive User Interface (AUI)
that leverages real-time keystroke dynamics to infer user
cognitive and emotional states, thereby dynamically
adjusting UI elements to enhance digital well-being. By
integrating principles from behavioral data analysis, human-
computer interaction, and cognitive psychology, we have
developed a novel framework that moves beyond static
interface designs to create more responsive, empathetic, and
user-centric digital environments.

Our comprehensive experimental evaluation revealed
that the AUI significantly improved task performance,
enhanced typing efficiency and accuracy, and substantially
reduced perceived cognitive load, stress, and fatigue among
users. These findings underscore the profound impact that
intelligent interface adaptation can have on optimizing user
experience and promoting healthier digital habits. The ability
to passively and continuously monitor user states through
keystroke patterns provides a powerful, non-intrusive
mechanism for personalized interaction, paving the way for
a new generation of digital systems that are inherently
supportive of human flourishing.

This study contributes to the growing body of knowledge
by providing empirical evidence for the utility of keystroke
dynamics as a robust indicator of user well-being and by
offering a foundational blueprint for the design and
implementation of adaptive interfaces. While acknowledging
certain limitations, such as the controlled experimental
setting and reliance on a single modality of behavioral data,
our work opens exciting avenues for future research.
Expanding to multi-modal data integration, exploring more
objective ground truth measures, developing advanced
adaptive control mechanisms, and addressing ethical
considerations related to privacy will be crucial next steps.
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Ultimately, this research advocates for a paradigm shift
in digital product design-one that prioritizes not just
functionality and efficiency, but also the cognitive and
emotional well-being of the user. By embracing adaptive
intelligence, we can create digital technologies that are not
only powerful tools but also thoughtful companions,
fostering a more balanced and sustainable relationship
between humans and their digital world.

REFERENCES
[1] Yang, Z., Chen, Y., Sarwar, Z., Schwartz, H., Zhao, B. Y., & Zheng,

H. (2023). Towards a general video-based keystroke inference attack.
In 32nd USENIX Security Symposium (USENIX Security 23) (pp.
141-158).

[2] Feng, Y., Liu, D., Jin, W., & Gong, L. (2025). KeyPrint: Practical
Black-box Keystroke Inference Attacks to Mobile Devices.
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 9(2), 1-30. https://doi.org/10.1145/3729493

[3] Medvedev, V., Budžys, A., & Kurasova, O. (2025). A decision-
making framework for user authentication using keystroke dynamics.
Computers & Security, 104494.
https://doi.org/10.1016/j.cose.2025.104494

[4] Monge Roffarello, A., De Russis, L., & Pellegrino, M. (2024, June).
Digital wellbeing lens: Design interfaces that respect user attention. In
Proceedings of the 2024 International Conference on Advanced
Visual Interfaces (pp. 1-5). https://doi.org/10.1145/3656650.3656674

[5] Kim, I., & Lee, U. (2024, May). Navigating user-system gaps:
understanding user-interactions in user-centric context-aware systems
for digital well-being intervention. In Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems (pp. 1-15).
https://doi.org/10.1145/3613904.364197

[6] De Luca, E. W., Joers, J. M., & Tkalcic, M. (2025, June). Designing
Intelligent User Interfaces for Well-Being (Tutorial). In Adjunct
Proceedings of the 33rd ACM Conference on User Modeling,
Adaptation and Personalization (pp. 8-9).
https://doi.org/10.1145/3708319.3727564

[7] Ibadullaeva, S. (2025). Beyond screens: An adaptive leadership
approach to addressing digital distortions and student well-being.
Journal of Cases in Educational Leadership, 28(2), 119-134.
https://doi.org/10.1177/15554589251320850

[8] Hou, Y., Xie, Q., Zhang, N., & Lv, J. (2025). Cognitive load
classification of mixed reality human computer interaction tasks
based on multimodal sensor signals. Scientific Reports, 15(1), 13732.
https://doi.org/10.1038/s41598-025-98891-3

[9] Darejeh, A., Marcusa, N., Mohammadi, G., & Sweller, J. (2024). A
critical analysis of cognitive load measurement methods for
evaluating the usability of different types of interfaces: guidelines and
framework for Human-Computer Interaction. arXiv preprint
arXiv:2402.11820. https://doi.org/10.48550/arXiv.2402.11820

[10] Kosch, T., Karolus, J., Zagermann, J., Reiterer, H., Schmidt, A., &
Woźniak, P. W. (2023). A survey on measuring cognitive workload in
human-computer interaction. ACM Computing Surveys, 55(13s), 1-
39. https://doi.org/10.1145/3582272

[11] Nie, J., Yuan, Y., Chao, X., Li, Y., & Lv, L. (2024). In smart
classroom: Investigating the relationship between human–computer
interaction, cognitive load and academic emotion. International

Journal of Human–Computer Interaction, 40(13), 3528-3538.
https://doi.org/10.1080/10447318.2023.2190257

[12] Salthouse, T. A. (1986). Perceptual, cognitive, and motoric aspects of
transcription typing. Psychological bulletin, 99(3), 303.

[13] Logan, G. D., & Crump, M. J. (2011). Hierarchical control of
cognitive processes: The case for skilled typewriting. In Psychology
of learning and motivation (Vol. 54, pp. 1-27). Academic Press.
https://doi.org/10.1016/B978-0-12-385527-5.00001-2

[14] Rieger, M., & Bart, V. K. (2016). Typing style and the use of
different sources of information during typing: an investigation using
self-reports. Frontiers in psychology, 7, 1908.
https://doi.org/10.3389/fpsyg.2016.01908

[15] Salthouse, T. A. (1984). Effects of age and skill in typing. Journal of
Experimental Psychology: General, 113(3), 345.
https://doi.org/10.1037/0096-3445.113.3.345

[16] Landauer, T. K. (1987). Relations between cognitive psychology and
computer system design. Interfacing thought: cognitive aspects of
human-computer interaction, 1-25.

[17] Brown, M., Lord, E., & John, A. (2023). Adaptation of ACTivate
your wellbeing, a digital health and well-being program for young
persons: co-design approach. JMIR formative research, 7, e39913.
https://doi.org/10.2196/39913

[18] Lukoff, K., Lyngs, U., Shirokova, K., Rao, R., Tian, L., Zade, H., ...
& Hiniker, A. (2023, April). Switchtube: a proof-of-concept system
introducing “adaptable commitment interfaces” as a tool for digital
wellbeing. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (pp. 1-22).
https://doi.org/10.1145/3544548.3580703

[19] Al-Mansoori, R. S., Al-Thani, D., & Ali, R. (2023). Designing for
digital wellbeing: From theory to practice a scoping review. Human
Behavior and Emerging Technologies, 2023(1), 9924029.
https://doi.org/10.1155/2023/9924029

[20] Marrone, S., & Sansone, C. (2022). Identifying Users' Emotional
States through Keystroke Dynamics. DeLTA, 2022, 207-214.
https://doi.org/10.5220/0011367300003277

[21] Epp, C., Lippold, M., & Mandryk, R. L. (2011, May). Identifying
emotional states using keystroke dynamics. In Proceedings of the
sigchi conference on human factors in computing systems (pp. 715-
724). https://doi.org/10.1145/1978942.1979046

[22] Potential eye tracking metrics and indicators to measure cognitive
load in human-computer interaction research.
http://dx.doi.org/10.37398/JSR.2020.640137

[23] Sevcenko, N., Appel, T., Ninaus, M., Moeller, K., & Gerjets, P.
(2023). Theory-based approach for assessing cognitive load during
time-critical resource-managing human - computer interactions: an
eye-tracking study. Journal on Multimodal User Interfaces, 17(1), 1-
19. https://doi.org/10.1007/s12193-022-00398-y

[24] Hollender, N., Hofmann, C., Deneke, M., & Schmitz, B. (2010).
Integrating cognitive load theory and concepts of human - computer
interaction. Computers in human behavior, 26(6), 1278-1288.
https://doi.org/10.1016/j.chb.2010.05.031

[25] Al Siyabi, W. S. A., & Al Minje, Y. (2021, August). A conceptual
review on integration of cognitive load theory and human-computer
interaction. In 2021 International Conference on Software
Engineering & Computer Systems and 4th International Conference
on Computational Science and Information Management (ICSECS-
ICOCSIM) (pp. 667-672). IEEE.
https://doi.org/10.1109/ICSECS52883.2021.00127

https://doi.org/10.1145/3729493
https://doi.org/10.1016/j.cose.2025.104494
https://doi.org/10.1145/3656650.3656674
https://doi.org/10.1145/3613904.364197
https://doi.org/10.1145/3708319.3727564
https://doi.org/10.1177/15554589251320850
https://doi.org/10.1038/s41598-025-98891-3
https://doi.org/10.48550/arXiv.2402.11820
https://doi.org/10.1145/3582272
https://doi.org/10.1080/10447318.2023.2190257
https://doi.org/10.1016/B978-0-12-385527-5.00001-2
https://doi.org/10.3389/fpsyg.2016.01908
https://doi.org/10.1037/0096-3445.113.3.345
https://doi.org/10.2196/39913
https://doi.org/10.1145/3544548.3580703
https://doi.org/10.1155/2023/9924029
https://doi.org/10.5220/0011367300003277
https://doi.org/10.1145/1978942.1979046
http://dx.doi.org/10.37398/JSR.2020.640137
https://doi.org/10.1007/s12193-022-00398-y
https://doi.org/10.1016/j.chb.2010.05.031
https://doi.org/10.1109/ICSECS52883.2021.00127

	1.INTRODUCTION
	2.RELATED WORK
	2.1.Keystroke Dynamics for User State Inference
	2.2.Adaptive User Interfaces (AUIs)
	2.3.Digital Well-being and Cognitive Psychology in HCI

	3.3.METHODOLOGY AND SYSTEM DESIGN
	3.1.Data Acquisition
	3.2.Keystroke Feature Extraction
	3.3.User State Inference Models
	3.4.Adaptive User Interface (AUI) Design Principles
	3.5.System Architecture

	4.RESULTS
	4.1.Experimental Design
	4.2.Data Collection and Preprocessing
	4.3.User State Inference Model Training and Evaluation
	4.4.Adaptive Interface Effect Evaluation
	4.4.1.Typing Metrics
	4.4.2.Cognitive Load Assessment
	4.4.3.Digital Well-being


	5.ANALYSIS AND DISCUSSION
	5.1.Interpretation of Results
	5.2.Comparison with Existing Literature
	5.3.Theoretical and Practical Implications

	6.CONCLUSION
	REFERENCES


