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Abstract—Machine learning has made great strides, but its
progress is often held back by a need for massive datasets. This
is a major hurdle in fields where data is scarce or expensive.
Humans, on the other hand, can learn from just a few
examples. This paper introduces a new one-shot learning
framework that mimics this human ability. We built a model
that learns similarity in a way that's similar to how people do it,
by looking at the general appearance of things. This makes our
model more transparent and easier to understand than many
other Al systems. We also developed a new optimization
algorithm to make the learning process more efficient. We
show that our framework can be used to solve problems in a
variety of fields, including design, engineering, business, and
culture. Our experiments show that our model performs well
even with very little data, and that it is also easy to interpret.
This work is a step towards building more human-like Al, and
it also opens up new possibilities for innovation in many
different areas.
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1. INTRODUCTION

Artificial Intelligence (AI) has revolutionized science,
industry, and daily life, driving advancements in automation,
creativity, and decision-making [1]. However, most Al
systems still rely on vast amounts of annotated data, which
limits their scalability and applicability in data-scarce
environments [2]. This dependency has motivated
researchers to seek more data-efficient learning paradigms
that better emulate how humans learn from limited
experience. Unlike machines, humans can acquire new
concepts from only one or a few examples, generalize them
flexibly, and apply abstract knowledge to novel situations

[3174].

Recent studies have explored the cognitive foundations
of such abilities, showing that human learning involves
hierarchical reasoning, analogical mapping, and structural
abstraction rather than statistical memorization [5]. Inspired
by these mechanisms, one-shot learning has emerged as a

promising approach that aims to replicate human-like
adaptability within artificial systems. Yet, despite significant
progress, existing models often remain opaque and domain-
restricted, making it difficult to interpret or transfer their
learned representations across tasks.

To overcome these challenges, this paper proposes an
Interdisciplinary One-Shot Learning Framework that mimics
human cognition to achieve data efficiency, interpretability,
and cross-domain generalization. Grounded in human-
inspired perception and abstraction, the framework
introduces a transparent mechanism for similarity reasoning
and adaptive optimization. By integrating perspectives from
design, engineering, business, and culture, this work
advances the vision of human-like artificial intelligence—
one that learns efficiently, reasons transparently, and
innovates beyond disciplinary boundaries [6].

2. RELATED WORK

Recent advances in machine learning have driven
remarkable progress in perception, generation, and reasoning;
however, these achievements often depend on massive
labeled datasets, making them impractical in many real-
world scenarios [7]. To address this challenge, researchers
have explored a range of data-efficient learning paradigms,
including One-Shot Learning, Few-Shot Learning, Meta-
Learning, and Transfer Learning [8].

One-Shot Learning aims to enable models to learn new
concepts from only one or a few examples, a capability that
closely resembles human cognition [9]. Classic approaches,
such as Siamese and Matching Networks, introduced metric-
based architectures that measure similarity between
instances rather than relying on large-scale classification
[10]. This paradigm highlights the importance of feature
generalization and cross-class similarity, paving the way for
more human-like learning behavior.

Few-Shot Learning extends the one-shot paradigm by
training models to adapt quickly with only a small number of
examples [11]. It focuses on learning robust priors or meta-
knowledge that can generalize to unseen classes. Notable
works such as Prototypical Networks demonstrate how
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embedding-based similarity spaces can achieve competitive
performance under extreme data scarcity [12].

Meta-Learning, or “Learning to Learn,” provides a
broader framework for data-efficient adaptation [7]. Instead
of learning specific tasks, meta-learning systems learn how
to optimize themselves for new tasks based on prior
experiences [13]. The Model-Agnostic Meta-Learning
(MAML) algorithm, for example, learns initial model
parameters that can be rapidly fine-tuned to new problems
[14]. Such mechanisms make meta-learning foundational to
achieving human-like flexibility in artificial systems [15].

Transfer Learning further addresses data scarcity by
reusing knowledge acquired from one domain to improve
performance in another [16]. Foundational work in this field
explores how feature representations learned from large
datasets can be fine-tuned for related but smaller tasks.
Theoretical studies have also investigated conditions under
which transfer leads to positive or negative effects. In
interdisciplinary contexts, transfer learning enables efficient
cross-domain adaptation, facilitating innovation across
diverse fields such as natural language processing, computer
vision, and engineering .

Despite these advances, existing data-efficient paradigms
often face limitations in interpretability and cross-domain
generalization. Deep neural models can achieve high
accuracy but frequently operate as “black boxes,” making
their decision processes difficult to explain [16]. This
opacity limits their reliability in domains that demand
transparency, such as healthcare, business strategy, or
cultural analysis. Addressing these issues requires
frameworks that not only learn efficiently from limited data
but also provide cognitively meaningful explanations of how
knowledge is transferred and represented.

Human intelligence is inherently data-efficient and
generalizable, enabling people to form abstractions and
analogies from minimal experience. Research in human-like
learning aims to model this ability computationally, bridging
cognitive science and machine learning. Theoretical and
empirical studies show that humans rely on hierarchical
abstraction and analogy-making to construct conceptual
knowledge [17]. Modeling these mechanisms has become
central to the pursuit of human-level artificial intelligence.

Interdisciplinary applications of Al further test the limits
of generalization. Many real-world challenges—such as
product design, systems engineering, market forecasting, and
cultural heritage analysis—require integrating insights
across heterogeneous data and conceptual domains [18].
Traditional Al models are typically domain-specific, which
constrains their ability to transfer knowledge across
disciplines. Recent research has demonstrated how transfer
learning and meta-learning can facilitate cross-domain
innovation, for instance in adaptive design systems and
intelligent business analytics [19]. These studies reveal that
when models capture shared structural representations, they
can bridge conceptual gaps between domains and promote
creativity.

However, major gaps remain in building interpretable
and transparent interdisciplinary systems. Many human-like
learning models still fall short in replicating the flexibility
and explainability of human cognition. Similarly,
interdisciplinary Al applications often require manual
adaptation to each field, preventing scalable generalization
[20]. To overcome these barriers, the present study
introduces a cognitively inspired Interdisciplinary One-Shot

Business, and Culture

Learning Framework that combines visual-intuitive
similarity modeling and multi-level optimization, thereby
enhancing both interpretability and data efficiency [21].

3. METHODOLOGY AND SYSTEM DESIGN

Our framework is designed to achieve human-like, data-
efficient learning by combining cognitively inspired
similarity modeling with adaptive optimization. It integrates
two core components—the Distortable Canvas and the
Abstracted Multi-Level Gradient Descent (AMGD)—to
emulate human perception of general appearance similarity
and hierarchical reasoning [22].

3.1.  The Distortable Canvas: Modeling General-
Appearance Similarity

Humans perceive similarity not by comparing isolated
features, but by assessing the overall structure and how one
object could transform into another with minimal effort. The
Distortable Canvas formalizes this principle by representing
images or visual patterns as deformations on a flexible
surface [23]. The similarity between two instances is defined
by the minimal “energy” required to transform one into
another, considering both geometric deformation and
photometric variation.

The distortable canvas operates by finding the optimal
transformation that maps one image onto another,
minimizing a combined distortion cost. This cost function
considers both the geometric deformation of the canvas
(D_V) and the photometric changes in

color or intensity (D_C)[24]. The objective is to find a
transformation function, T, that minimizes:

Cost(I1, 12) =min_T [ @ * DV(T) + B * DC(I1, T(11),12) ] (1)

where 11 and 12 are the two images being compared, o
and [ are weighting parameters,

DV (T ) quantifies the energy required for the geometric
transformation T , and DC (I1, T (I1), 12) measures the color
difference between the transformed 11 and 12 [25].

The transformation T is not restricted to affine or
projective transformations but can

encompass highly non-linear deformations, reflecting the
complex ways humans mentally manipulate visual
information. The output of this process is a similarity score,
or distance, that quantifies how 'close' two images are in this
cognitively-inspired space [26] [27].

3.2.  Abstracted Multi-level Gradient Descent (AMGD)
for Optimization

Optimizing transformations in high-dimensional visual
spaces is challenging due to numerous local minima. To
overcome this, we introduce AMGD, a hierarchical
optimization algorithm inspired by human problem-solving
strategies. AMGD initiates with coarse-level transformations
to capture global structure and progressively refines them at
finer levels, adjusting learning rates and update strategies
according to the complexity encountered at each stage [28].
This multi-level process allows the algorithm to avoid local
traps, converge more efficiently, and mirror human
reasoning, where understanding typically begins with the
overall concept before focusing on detailed features. By
combining coarse-to-fine updates with adaptive adjustments,
AMGD produces transformations that are both accurate and
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interpretable, revealing the
alignment between instances.

trajectory of perceptual

3.3. Component Details

The framework is structured as a modular system
comprising the Distortable Canvas, the AMGD optimizer,
and a domain-specific application layer. The learned
similarity space serves as a flexible foundation, enabling its
application across diverse domains. In design, the system
facilitates the generation of sketches aligned with reference
images, models user preferences from limited interactions,
and supports adaptive design systems capable of responding
to evolving trends [29]. In engineering, it accelerates
prototyping from sparse data, predicts potential system
failures through anomaly detection, and expedites product
development [30]. For business applications, the framework
can identify emerging market trends from noisy or limited
datasets, model consumer behavior for personalized
recommendations, and support data-driven product
innovation. In cultural and heritage domains, it enables
automated recognition of artistic styles, paleographic
analysis of historical manuscripts, and the preservation of
intangible cultural assets by capturing essential patterns from
limited examples. The implementation leverages Python for
core logic with libraries such as NumPy and SciPy for
numerical operations, while PyTorch or TensorFlow are
used for efficient image handling and GPU acceleration.
Custom data structures manage transformation parameters
and the AMGD hierarchy, and the modular design ensures
scalability to larger datasets or more complex
transformations. This methodology demonstrates a robust,
interpretable, and cognitively grounded framework capable
of addressing diverse real-world challenges through data-
efficient one-shot learning.

4. EXPERIMENTS AND RESULTS

To rigorously evaluate the efficacy and interdisciplinary
applicability of our proposed one-shot learning framework,
we conducted a series of experiments across various
benchmarks and real-world scenarios relevant to design,
engineering, business, and cultural applications. Our
experimental design emphasizes the framework's ability to
learn from extremely limited data, its interpretability, and its
performance against conventional methods in data-scarce
environments. All experiments were conducted without any
pre-training or data augmentation, adhering strictly to the
'only-few-shot' paradigm.

4.1.  Experimental Setup and Benchmarks

We utilized a combination of established datasets and
synthetically constructed data tailored to fit specific
interdisciplinary challenges. For evaluating the core learning
mechanism (Distortable Canvas and AMGD), we selected
primary benchmarks from the MNIST, EMNIST, Omniglot,
and QuickDraw datasets—drawing on the evaluation

protocols of prior work in the field while refining task
parameters to focus specifically on the one-shot and few-
shot regimes. For interdisciplinary applications, we designed
specific experimental setups:

Design Application (Sketch Recognition & Style
Transfer): We used a subset of the QuickDraw dataset (for
sketch recognition) and a curated set of design mood

boards and product images (for style transfer, represented
as image sets). The task involved recognizing unseen
sketches after exposure to only one example per category
and transferring stylistic elements from a single reference
image.

Engineering Application (Material Microstructure
Classification): We generated synthetic images representing
various material microstructures (e.g., different grain sizes,
phase distributions) under controlled conditions. The
challenge was to classify novel microstructures based on a
single training image per class, mimicking rapid material
characterization in R&D.

Business  Application (Market Trend Anomaly
Detection): We constructed time-series data representing
simplified market trends (e.g., stock price fluctuations, sales
volumes) with embedded subtle anomalies. The task was to
detect these anomalies after learning 'normal' patterns from a
few historical data points.

Performance metrics included accuracy, Fl-score (for
classification tasks), and a qualitative assessment of
interpretability (e.g., visual analysis of transformation flows).
For all classification tasks, we report mean and standard
deviation from 5 independent runs to ensure statistical
robustness. Comparison models included traditional nearest-
neighbor classifiers, Support Vector Machines (SVMs), and
simplified neural network architectures trained from scratch
on the same limited data, without pre-training.

4.2.  Core Learning Performance on Abstract Visual
Tasks

Our framework's core ability to learn general-appearance
similarity from minimal data was first validated on abstract
visual tasks, replicating and extending the findings from
prior work. The results consistently demonstrate superior
performance in the 'only-few- shot' regime.

For the MNIST dataset (handwritten digits), we
evaluated the model's accuracy when trained with only N
examples per class (N=1, 2, 3, 4). As shown in Figure 1, our
model significantly outperforms both traditional ML
algorithms and contemporary neural networks in this
extreme data scarcity setting. With just one training image
per class, our model achieved an average accuracy of 80.2%
(+£1.5%), which increased to 90.5% (£0.8%) with four
training images per class. This highlights the framework's
exceptional data efficiency and generalization capabilities.
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Figure 1. MNIST Only-Few-Shot Classification Accuracy

The Omniglot dataset, known for its diverse handwritten
characters from 50 different alphabets, presents a more
challenging one-shot learning task. Our model achieved a
remarkable 93.2% (+0.7%) accuracy in the 20-way one-shot

classification task, approaching human-level performance
(95.5%). This result, depicted in Figure 2, is particularly
significant as our model did not utilize any background set
for pre-training or stroke information, unlike many state-of-
the-art methods designed specifically for Omniglot.

Error Rate (%)
o

T T
Our Framework Human Performance

T
Matching Networks
Model
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Figure 2. Omniglot One-Shot Classification Performance (Error Rate Leaderboard)

4.3.  Interdisciplinary Application Results

Beyond abstract visual tasks, we demonstrated the
framework's versatility and effectiveness in solving real-
world problems across the four interdisciplinary domains.

Our framework proved highly effective in recognizing
novel sketches and facilitating style transfer with minimal
examples. For sketch recognition on a subset of QuickDraw,
the model achieved 88.7% (£1.2%) accuracy with only one
training example per sketch category, demonstrating its
ability to capture the essence of a drawing from a single
instance. This is crucial for adaptive design systems where
new design elements are constantly introduced.

For style transfer, we qualitatively assessed the generated
outputs. Given a single reference image (e.g., a mood board
or a product with a specific aesthetic) and a target image
(e.g., a rough design sketch), our model successfully applied
the stylistic elements of the reference to the target, producing
visually coherent and aesthetically pleasing results.

In the engineering domain, our framework demonstrated
robust performance in classifying material microstructures
from limited data. Using synthetically generated images of
various material phases and grain structures, the model
achieved 91.3% (£0.9%) accuracy in classifying unseen
microstructures with only one training image per class. This
capability is vital for rapid material characterization and
quality control in manufacturing processes where obtaining
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numerous samples for each new material variant is
impractical.

Figure 3 presents the confusion matrix for the material
microstructure classification, highlighting the model's ability

to differentiate between subtle wvariations in material
composition and structure. The high diagonal values indicate
strong classification performance across all classes.

Class A

Class B

True Class

Class C - 3
Class D A 1
T T T
o < Q
o & ) &
C@" c;af’ c;af’ o‘:?’

Predicted Class

Figure 3. Confusion Matrix for One-Shot Material Microstructure Classification

Furthermore, the interpretability of our model allowed
engineers to visualize the 'transformation flow' between
different microstructures, providing insights into the key
structural differences that the model learned. This visual
explanation, shown in Figure 4, can aid in understanding
material  properties and optimizing manufacturing

parameters.

Figure 4. Visualization of Transformation Flow Between Different
Material Microstructures

For business applications, our framework excelled in
detecting subtle anomalies in market trend data. By
representing time-series data as 'visual patterns' (e.g., using
Gramian Angular Fields or Recurrence Plots), the model
learned normal market behavior from a few historical
examples. When presented with new data, it accurately
identified anomalous patterns indicative of market shifts or
unusual events.

Figure 5 illustrates the anomaly detection performance,
showing the reconstruction error for normal versus
anomalous market patterns. Anomalous patterns consistently
exhibited significantly higher reconstruction errors, enabling
effective detection. The model achieved an F1-score of 0.89
(£0.03) for anomaly detection, demonstrating its reliability
in identifying critical business events from sparse data.
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In the cultural domain, our framework proved highly
effective in recognizing historical script characters, a
challenging task due to the uniqueness and rarity of many
historical scripts. On a curated dataset of historical script
characters, the model achieved 85.1% (+1.1%) accuracy in
recognizing unseen characters with only one training
example per character class. This capability is invaluable for
digital humanities and cultural heritage preservation efforts.
4.4.  Interpretability and Generalization Analysis

A key advantage of our framework is its inherent
interpretability, stemming from the white-box nature of the

T
Anomalous Patterns

Reconstruction Error for Normal vs. Anomalous Market Trend Patterns

Distortable Canvas and the AMGD optimizer. Unlike
opaque deep learning models, our framework allows for
direct visualization of the learned similarity space and the
transformation flows between data points. This transparency
provides profound insights into how the model makes
decisions and generalizes from limited examples.

Figure 6 presents a t-SNE visualization of the learned
similarity space for a multi-class dataset, demonstrating how
our framework effectively clusters similar instances while
maintaining clear separation between different classes, even
with minimal training data. The clusters are formed based on
general-appearance similarity, reflecting human intuition.
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Figure 6. t-SNE Visualization of the Learned Similarity Space

Furthermore, the transformation flows provide a direct
visual explanation of the model's reasoning. When the model

identifies two instances as similar, the transformation flow
illustrates the minimal 'distortion' required to morph one into
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the other. This not only validates the model's decisions but
also offers new perspectives on visual relationships, akin to
human insights. This level of interpretability is critical for
high-stakes applications and for fostering trust in Al systems.

training'  categories. Our  framework  consistently
demonstrated superior or competitive performance,
particularly in scenarios with extreme data scarcity and
without any external pre-trained knowledge.

4.5.  Comparison with State-of-the-Art Methods Table 1 summarizes the performance comparison across
various benchmarks, highlighting our model's advantages in
data efficiency and interpretability. Our model's ability to
achieve high accuracy with only one or a few examples,
without the need for massive pre-training, positions it as a
highly promising alternative for real-world applications

where data is a limiting factor.

While direct comparisons with all state-of-the-art (SOTA)
few-shot learning methods are challenging due to their
reliance on extensive pre-training or specific meta-training
datasets, we conducted comparative analyses against
representative methods in the 'from-scratch' or 'minimal pre-

TABLE L. PERFORMANCE COMPARISON WITH REPRESENTATIVE FEW-SHOT LEARNING METHODS

MNIST Omniglot (1-shot, ~ Material Market Anomal Pre-trainin
Method glo Shot, Microstructure arke omaty Interpretability c-traming

(1-shot) 20-way) (F1-score) Required

(1-shot)

Our Framework 80.2% 93.2% 91.3% 0.89 High (White- box) No
Prototypical Networks o o .
(from scratch) 65.1% 88.5% 72.8% 0.75 Medium No
MAML(from scratch) 68.9% 89.1% 75.2% 0.78 Medium No
Simple k- NN 45.0% 60.0% 55.0% 0.60 High No
TextCaps (with N/A N/A N/A N/A Low Yes

pre training)

These results collectively underscore the robustness,
versatility, and interpretability of our interdisciplinary one-
shot learning framework. By mimicking human cognitive
processes, we have developed a powerful tool that can
effectively address data scarcity challenges and foster
innovation across a wide array of scientific and practical
domains.

5. ANALYSIS AND DISCUSSION

The experimental results presented in Section 4 provide
compelling evidence for the efficacy, interpretability, and
interdisciplinary applicability of our one-shot learning
framework. This section delves deeper into the implications
of these findings, discusses the observed phenomena,
compares our approach with related work, highlights the
research value, and acknowledges the limitations and
potential sources of error.

5.1.  Interpretation of Results and Observed Phenomena

The results demonstrate that our framework achieves
remarkable performance under extremely limited data
conditions across both abstract visual tasks, such as MNIST
and Omniglot, and a range of applied domains including
design, engineering, business, and cultural studies. This
efficiency can be attributed to the cognitively inspired
modeling of similarity through the Distortable Canvas,
which captures intrinsic relationships between instances by
minimizing perceptual distortions rather than relying on
conventional feature-based metrics, allowing robust
generalization from very few examples. Coupled with the
hierarchical optimization strategy of Abstracted Multi-Level
Gradient Descent, which progressively abstracts and refines
transformations, the framework effectively navigates
complex similarity spaces, avoiding local minima and
converging on stable solutions in a manner analogous to
human learning, where global understanding precedes
detailed refinement. Importantly, the framework provides
transparent insight into its decision-making process through
visualization ~ of  transformation  flows,  offering
interpretability that is particularly valuable in high-stakes
contexts, such as material microstructure analysis, medical

diagnostics, and engineering systems, where understanding
the rationale behind outcomes is as critical as the results
themselves. These properties collectively illustrate that
effective learning can emerge from cognitively grounded
similarity perception rather than large amounts of data.

5.2.  Comparison with Related Work

Compared with existing few-shot, meta-learning, and
transfer learning methods, the framework distinguishes itself
by achieving high performance without extensive pre-
training or meta-datasets, highlighting its genuine data
efficiency. Furthermore, its emphasis on human-inspired
general-appearance similarity and white-box interpretability
provides actionable insight that many black-box approaches
lack, fostering trust and facilitating understanding across
domains. Beyond empirical performance, this approach
advances the theoretical understanding of human-like
learning, demonstrating that generalization can arise from
robust similarity perception. Practically, it offers a versatile
tool for innovation in data-scarce contexts, enabling rapid
design prototyping, predictive maintenance, market analysis,
and the preservation of cultural heritage. Nonetheless,
challenges remain, including computational costs for high-
dimensional transformations, optimal representation of non-
visual data, scalability to very large datasets, and
generalization to entirely novel tasks. Developing
quantitative metrics for interpretability also represents an
important direction for future research. Overall, the
framework provides a foundation for more human-like,
interpretable, and data-efficient learning, offering both
theoretical insight and practical utility across disciplines.

6. CONCLUSION

This paper presents a novel interdisciplinary one-shot
learning framework that rethinks how learning and
generalization can occur under extreme data scarcity,
drawing inspiration from human cognitive processes. By
conceptualizing a distortable canvas to model general-
appearance similarity and optimizing this space through an
Abstracted Multi-level Gradient Descent (AMGD) algorithm,
we developed a transparent, white-box model that combines
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remarkable data efficiency with inherent interpretability.
Unlike conventional machine learning paradigms, which
typically rely on large datasets and often opaque decision
processes, our approach enables high-performance learning
in an ‘only-few-shot’ regime without requiring pre-training
or data augmentation, providing a robust solution in contexts
where data is severely limited.

The interpretability of the framework is a particularly
notable strength, as the visualization of transformation flows
and the learned similarity space offers direct insight into the
reasoning process, allowing users to understand how the
model arrives at its conclusions. This transparency not only
fosters trust but also facilitates error analysis and the
extraction of meaningful knowledge from the learned
representations, which is especially valuable in high-stakes
applications such as material design, engineering diagnostics,
and cultural heritage preservation. The framework’s ability
to generalize across diverse interdisciplinary domains
demonstrates its versatility, highlighting its potential as a
unifying mechanism for innovation that bridges traditionally
disparate fields. By supporting applications ranging from
adaptive design and agile engineering to strategic business
intelligence and preservation of cultural artifacts, the
framework illustrates how cognitively inspired approaches
can enable both practical utility and methodological insight.

Moreover, by emulating human processes of
generalization and abstraction, the framework contributes to
the broader goal of developing more human-like learning
systems. It demonstrates that effective learning and robust
generalization can emerge from cognitively grounded
similarity perception rather than relying solely on large-scale
statistical ~ accumulation,  thereby  advancing  our
understanding of fundamental principles underlying human
cognition. At the same time, the framework provides a
foundation for future exploration in several directions,
including extending its applicability to more complex and
heterogeneous data types, enhancing computational
efficiency, and developing quantitative metrics for
interpretability. In doing so, it establishes a pathway for
creating learning systems that are not only data-efficient and
interpretable but also capable of adapting to novel problems
in dynamic and resource-constrained environments.
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