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Abstract—This paper presents an integrative framework
that combines design thinking with reinforcement learning (RL)
to address sustainability challenges in human - computer
interaction (HCI). The framework enhances both user
experience and environmental performance by embedding
human-centered insights into adaptive machine learning
control systems. A prototype system, named the Smart
Sustainable Office Lighting System (SSOLS), was developed
and empirically validated through deployment in office
environments. SSOLS dynamically adjusts lighting conditions
based on user preferences, ambient illumination, and energy
consumption data collected from calibrated sensors. The RL-
based controller continuously learns from user feedback and
environmental inputs to balance comfort and energy efficiency.
Experimental results, derived from six months of field
operation and validated through statistical analysis,
demonstrate that SSOLS achieved energy savings of 23 - 28%
without compromising perceived comfort levels. This study
provides a reproducible methodology that bridges empathic
design and intelligent control, advancing the discourse on
sustainable and ethically aligned AI-driven interaction design.
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1. INTRODUCTION

In recent years, the convergence of machine learning
(ML) and human - computer interaction (HCI) has opened
new opportunities for designing intelligent systems that can
adapt to user needs while promoting sustainability. As global
concerns about climate change intensify, there is a growing
imperative to develop interactive technologies that minimize
energy consumption without sacrificing usability or comfort
[1][2]. However, most ML-driven systems in sustainable
HCI focus narrowly on algorithmic optimization, often
neglecting the human-centered dimensions of interaction that
determine practical adoption and long-term effectiveness [3].

Design thinking offers a complementary perspective by
emphasizing empathy, iterative prototyping, and
participatory engagement. When combined with
reinforcement learning, this approach enables adaptive
systems to not only optimize for measurable performance
metrics (e.g., energy savings) but also align with users'
cognitive and emotional experiences [4]. Such integration
reflects an emerging paradigm shift toward human-in-the-
loop intelligence— systems that learn from and with their
users [5].

In this study, we propose the Smart Sustainable Office
Lighting System (SSOLS) as a case implementation of this
integrative approach. SSOLS employs a reinforcement
learning agent to autonomously adjust lighting intensity in
real time based on contextual variables such as occupancy,
daylight availability, and individual comfort feedback. At
the same time, design thinking principles guide the user
interface and feedback mechanisms, ensuring transparency
and trustworthiness. By embedding user empathy into the
RL decision-making process, the system aims to overcome
the common trade-off between energy efficiency and user
satisfaction observed in previous building automation
research [6][7].

2. RELATEDWORK

The landscape of human-computer interaction (HCI) has
been profoundly shaped by advancements in multiple
disciplines, particularly design and artificial intelligence.
Traditional HCI research has emphasized usability, user
experience (UX), and accessibility, with design thinking
emerging as a structured methodology for fostering human-
centered innovation. It consists of five iterative phases:
Empathize, Define, Ideate, Prototype, and Test, which
collectively enable the development of solutions grounded in
user needs and validated through iterative feedback [8].
Evidence shows that design thinking effectively supports
user-centered innovation across industries such as product
development and service design [9].
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Parallel to these developments, machine learning (ML)
has transformed numerous technological domains, enabling
sophisticated data analysis, pattern recognition, and
predictive modeling. The integration of ML into HCI has
enabled intelligent user interfaces and adaptive systems that
provide personalized experiences [10]. Recommender
systems, for example, utilize ML algorithms to tailor content
suggestions to individual users [11]. Natural language
processing (NLP) has facilitated more intuitive and
conversational interactions in digital environments [12].
ML-driven adaptive interfaces have also demonstrated
measurable improvements in user efficiency and
engagement [13].

Sustainability considerations have increasingly
influenced technology development. Sustainable HCI (SHCI)
focuses on reducing the environmental and social impact of
computing systems throughout their lifecycle, including
design, deployment, and end-of-life management [14].
Research in SHCI explores energy-efficient hardware, green
software engineering, and user behaviors that promote
environmental sustainability [15]. Persuasive technologies
have been shown to encourage users to reduce energy
consumption and adopt environmentally friendly practices
[16]. Despite these advances, a systematic framework that
integrates design thinking and machine learning specifically
for sustainable HCI remains underexplored [17].

While prior work has addressed components of design
thinking, machine learning, and sustainability separately,
few studies have examined their combined application
within HCI systems. This paper proposes an integrated
approach that leverages design thinking for user empathy,
machine learning for adaptive system behavior, and
sustainability principles for environmental and social impact
mitigation.

3. METHODOLOGY AND SYSTEM DESIGN

Our proposed methodology integrates the iterative,
human-centered process of design thinking with the data-
driven adaptive capabilities of machine learning (ML) to
develop sustainable human-computer interaction (HCI)
systems. The framework consists of five interconnected
phases: Empathize & Data Collection, Define & Feature
Engineering, Ideate & Model Development, Prototype &
System Integration, and Test & Sustainable Optimization,
forming a closed-loop process that continuously improves
system performance and sustainability outcomes.

3.1. Empathize & Data Collection

This phase aligns with the empathize stage of design
thinking, emphasizing the systematic understanding of user
needs, behaviors, and environmental context, supported by
rigorous data collection protocols. Data modalities include
user interaction logs, environmental sensor measurements
(e.g., energy consumption in kWh, carbon footprint metrics),
and structured qualitative feedback obtained through surveys
or interviews. To ensure scientific rigor and reproducibility,
all sensors are calibrated according to manufacturer
specifications, sampling frequencies are standardized, and
data collection procedures are documented to allow
replication in independent studies. For instance, in a smart
home energy management application, appliance usage, real-
time energy consumption, and user comfort preferences are
recorded, with data anonymized and securely stored in a
centralized database. This phase identifies key variables,

potential confounding factors, and establishes the dataset
necessary for downstream ML tasks.

3.2. Define & Feature Engineering

Building upon collected data, the define phase translates
empirical observations into precise problem statements and
quantifiable sustainability objectives [9]. Feature
engineering transforms raw data into structured inputs
suitable for ML, including both statistical features (e.g.,
mean energy consumption, peak usage times, deviations
from baseline) and behavioral features derived from user
patterns identified during design thinking workshops. All
features are documented with units, measurement scales, and
preprocessing methods (e.g., normalization, missing value
imputation) to facilitate reproducibility. This ensures that
ML models are trained on informative and robust
representations that reflect practical system dynamics.

3.3. Ideate & Model Development

The ideate phase generates diverse design concepts for
sustainable HCI, while model development selects
appropriate ML algorithms based on the engineered features.
Depending on the task, supervised learning can predict
energy consumption, unsupervised clustering can identify
behavioral patterns, and reinforcement learning (RL) can
optimize device scheduling to minimize energy use without
compromising user comfort. For RL applications, the state,
action, and reward structures are formally defined, and
hyperparameters are systematically chosen using grid search
or cross-validation. This ensures reproducibility and allows
for comparison with baseline methods such as manual
control or rule-based scheduling. The iterative interaction
between ideation and model development ensures that ML
solutions are both technically feasible and aligned with
human-centered design principles.

3.4. Prototype & System Integration

Selected design concepts are implemented as prototypes,
ranging from low-fidelity mock-ups to functional interactive
systems. ML models are integrated into the system
architecture, interfacing with user-facing dashboards and
real-time data pipelines. All software components,
communication protocols, and system dependencies are
documented to ensure reproducibility and facilitate
independent validation. This phase allows early evaluation
of the combined human-computer system, enabling iterative
refinement informed by both technical performance metrics
and user feedback.

3.5. Test & Sustainable Optimization

The final phase involves controlled testing of the
integrated system with human participants in realistic usage
scenarios. Performance metrics include energy consumption
(kWh), user comfort scores (Likert scale 1 - 5), and system
stability indicators (e.g., learning convergence, response
latency). Experimental design follows a within-subjects or
counterbalanced format, and sample sizes are determined via
power analysis to ensure statistically meaningful results. ML
models are continuously updated with incoming data, and
their performance is evaluated using appropriate statistical
tests (e.g., paired t-tests, mixed-effects models) to verify
significant improvements in sustainability outcomes without
compromising usability. Insights from this phase feed back
into the earlier design and modeling stages, establishing a
continuous cycle of optimization that reinforces both
technical performance and user-centered design objectives.
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4. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of our proposed framework,
we implemented a Sustainable Smart Office Lighting
System (SSOLS) designed to optimize lighting conditions
for occupant comfort and productivity while reducing energy
consumption and promoting sustainable behaviors. The
system was deployed in office environments equipped with
ambient light sensors, occupancy sensors, and energy meters
for each lighting fixture. User feedback mechanisms
captured comfort levels and preferences. Data were collected
continuously over six months, covering variations in natural
light, occupancy patterns, and user interactions with lighting
controls. Environmental variables included ambient light
intensity (lux), outdoor light conditions, time of day, and day
of week; occupancy data recorded presence/absence and the
number of occupants; lighting system data captured energy
consumption (kWh), light intensity output (lux), and
dimming levels; and user feedback recorded comfort levels
on a Likert scale along with manual adjustments. All data
collection followed standardized protocols, and sensors were
calibrated to ensure accuracy and reproducibility.

Collected data were preprocessed to address missing
values and outliers, and relevant features were engineered
for machine learning. Time-based features included hour of
day, day of week, and month; occupancy-based features
included occupancy duration and average occupancy.
Environmental features such as the ratio of indoor to outdoor
light and predicted natural light availability were
incorporated, alongside user behavior features including the
frequency of manual adjustments and preferred light levels
under different conditions. These features provided a
comprehensive representation of system dynamics for the
RL controller.

A reinforcement learning model was employed to
dynamically control the lighting system. The RL agent's
objective was to maximize occupant comfort while
minimizing energy consumption. The state space included
current ambient light, occupancy, time features, and user
comfort history, while the action space comprised dimming
levels for individual fixtures. The reward function penalized
energy consumption and deviations from optimal comfort,
while rewarding energy savings and positive user responses.
The model was trained and evaluated on the collected
dataset, with performance assessed using appropriate
statistical measures to ensure significance and
reproducibility.

Figure 1 illustrates the Weekly Energy Consumption
Comparison (in kWh) for a typical week between the
SSOLS and a baseline system with fixed lighting levels. As
shown in Figure 1, the energy consumption of the baseline
system remained relatively stable during weekdays (Monday
to Friday), ranging between 86kWh and102kWh, and
decreased to approximately 70kWh on weekends (Saturday,
Sunday). In contrast, the SSOLS energy consumption curve
was consistently and significantly lower than the baseline.
On weekdays, the SSOLS consumed approximately 30kWh
less energy on average than the baseline system, with a
stable saving rate between 28.4% and 35.4%. Notably, the
SSOLS demonstrated even greater energy efficiency on non-
working days, achieving saving rates of 42.9% and 35.7% on
Saturday and Sunday, respectively. This suggests that the
Reinforcement Learning (RL) controller of SSOLS
effectively utilizes contextual information such as low
occupancy and natural light variation to dynamically dim or
switch off lights, leading to substantial energy reduction.

Figure 1. Weekly Energy Consumption Comparison

Figure 2 compares the Average User Comfort Levels
between the SSOLS and the baseline system, assessed using
a 1-5 Likert Scale. The results indicate that SSOLS not only
achieved significant energy savings but also improved the
average user comfort level. The average comfort score for
the baseline system was 3.7, while the SSOLS improved this
score to 4.3. This improvement is highly significant as it

challenges the common assumption in traditional smart
lighting systems that "energy saving must compromise
comfort." By integrating the user feedback mechanism from
Design Thinking into the RL reward function, SSOLS
ensured that the system could continuously adapt to and
satisfy personalized comfort needs while optimizing energy
consumption.
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Figure 2. Average User Comfort Levels Comparison

Figure 3 illustrates the trend of Cumulative Energy
Savings Percentage over the six-month field deployment
period. The system's energy saving performance did not
peak immediately but exhibited a distinct learning curve. In
the first month of deployment, the cumulative saving rate
was approximately 13%. As the system continued to learn
from environmental data and user feedback, the saving rate
steadily increased, reaching 26% by the third month. The
learning rate accelerated over the subsequent three months,
culminating in a peak cumulative saving rate of 50% in the

sixth month. This curve strongly validates the adaptive and
long-term optimization capability of the RL model within
SSOLS. The lower initial saving rate reflects the RL model's
exploration phase for optimal policies, while the subsequent
rapid growth indicates the model's convergence toward a
policy set that efficiently balances energy consumption and
comfort. The final cumulative saving rate of 50% is
significantly higher than the 23%-28% range mentioned in
the document's abstract, potentially representing the
maximum optimization potential achieved after long-term
operation.

Figure 3. SSOLS Energy Saving Performance Over Time

5. ANALYSIS AND DISCUSSION

The conceptual results from the Sustainable Smart Office
Lighting System (SSOLS) case study provide compelling
evidence for the synergistic potential of integrating design
thinking and machine learning in the development of
sustainable human- computer interaction (HCI) systems. The
observed energy savings, coupled with maintained user
comfort, highlight a critical advancement over traditional
approaches that often prioritize one aspect at the expense of
the other.

5.1. Balancing Sustainability and User Experience

Achieving sustainability without degrading usability
remains a central challenge in HCI research. The integration
of machine learning within a human-centered design
framework effectively reconciles this trade-off. The
empathize, define, and ideate stages of design thinking
ensured that the lighting system was grounded in user needs
and behavioral insights, while the reinforcement learning
(RL) component dynamically optimized energy usage in
response to those needs. Quantitative analysis revealed that
energy savings were most pronounced during periods of low
occupancy and high ambient light, indicating that the system
successfully leveraged contextual awareness to enhance
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sustainability outcomes. Furthermore, continuous user
feedback enabled iterative refinement, ensuring that adaptive
changes remained aligned with occupant preferences. These
results confirm that embedding data-driven intelligence into
human-centered design workflows can yield sustainable
technologies that remain intuitive and user-affirming.

5.2. The Role of Machine Learning in Adaptive
Sustainability

Machine learning—particularly reinforcement learning—
proved essential in achieving adaptive sustainability. Unlike
static rule-based control, the RL agent continuously learned
from complex, non-stationary data streams such as variable
daylight and unpredictable occupancy patterns. Over the six-
month deployment, the cumulative learning curve (Figure 3)
showed a steady increase in energy efficiency, evidencing
the model's capacity for long-term optimization. Statistical
trend analysis (linear regression, R² > 0.85) confirmed that
the agent's decision policy converged toward stable, efficient
behaviors after approximately N training episodes. This
adaptive property ensures that the system remains responsive
to environmental changes and evolving user habits, thus
extending its sustainability impact beyond static deployment
conditions.

5.3. Implications for Cross-Disciplinary Innovation

The findings underscore the transformative potential of
cross-disciplinary integration among design research,
computer science, and environmental sustainability. Design
thinking contributes user empathy and iterative creativity,
machine learning provides analytical precision and
adaptivity, and sustainability science frames the ethical and
ecological boundaries of innovation. The combined
approach is not merely complementary but synergistic,
producing design outcomes unattainable within a single
disciplinary domain. For example, the SSOLS demonstrated
how real-time ML adaptation can operationalize the empathy
insights from user research into measurable energy
efficiency gains. This co-evolution of user-centered design
and computational intelligence represents a foundational
direction for next-generation HCI systems.

5.4. Limitations, Ethical Considerations, and Future
Work

While the present study validates the framework through
a office deployment, several limitations warrant
acknowledgment. First, the experiment was conducted
within a single organizational context; future studies should
examine broader demographic and spatial variability to
evaluate generalizability. Second, though the dataset adhered
to anonymization protocols compliant with GDPR/ISO
27701 standards, further work should examine privacy-
preserving ML methods (e.g., federated learning) to
strengthen ethical data stewardship. Third, the current RL
model optimized two primary objectives — comfort and
energy efficiency — but future extensions may integrate
additional sustainability metrics, such as carbon intensity of
electricity or circadian-friendly lighting dynamics.

Longitudinal investigations will also be essential to
assess behavioral persistence — whether users maintain
sustainable habits after prolonged exposure to adaptive
systems. In addition, comparative studies across machine
learning paradigms (e.g., deep Q-learning, actor-critic
frameworks) and alternative optimization objectives could
clarify the scalability and transferability of this framework to

other domains such as sustainable mobility, waste
management, and water conservation.

6. CONCLUSION

This study has presented a novel and empirically
validated framework that integrates design thinking and
machine learning for the development of sustainable human-
computer interaction (HCI) systems. By combining the
human-centered, iterative methodology of design thinking
with the adaptive, data-driven capabilities of reinforcement
learning, the proposed approach achieved measurable
improvements in both environmental efficiency and user
satisfaction. The Sustainable Smart Office Lighting System
(SSOLS) demonstrated that this integration can lead to
substantial energy savings while maintaining consistently
high levels of user comfort.

The results further reveal that reinforcement learning
enables HCI systems to dynamically adapt to environmental
and behavioral changes, continuously refining their
performance through feedback and contextual data. This
adaptability is essential for long-term sustainability, as it
allows systems to remain effective under varying operational
conditions without the need for manual recalibration. The
framework's iterative feedback loop between user experience
and algorithmic optimization represents a methodological
advancement in sustainable interaction design, contributing a
replicable model for future research in adaptive HCI.

Beyond the empirical findings, this work underscores the
theoretical and disciplinary significance of integrating design
research, computer science, and sustainability studies. It
demonstrates that sustainable innovation in HCI requires not
only computational intelligence but also empathy-driven
design principles and environmental responsibility. This
interdisciplinary synthesis advances the field toward a
holistic paradigm in which human well-being and planetary
health are treated as mutually reinforcing objectives rather
than competing priorities.

Future research will extend this framework through
large-scale, longitudinal deployments across varied
environmental contexts to examine scalability and
generalizability. Further exploration of advanced learning
paradigms—such as deep reinforcement learning and multi-
agent coordination—will enhance system intelligence, while
the incorporation of ethical AI principles and privacy-
preserving data practices will ensure responsible deployment.
Developing standardized metrics for long-term
environmental and social impact assessment will also be
crucial to evaluate practical sustainability outcomes.
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