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Abstract—This paper explores how learning from the
outcomes of design decisions influences the adoption of
different innovation strategies, specifically contrasting rule-
based design with cost-benefit reasoning in interdisciplinary
contexts. Drawing inspiration from metacognitive learning
principles, we propose a framework where design teams adapt
their strategic reliance on established design rules versus
utilitarian cost-benefit analysis based on the perceived success
of past project outcomes. Through computational modeling
and design scenarios, we demonstrate that adaptive learning
mechanisms can lead to individual and team-level differences
in design strategy preferences. This learning is shown to
transfer to novel design challenges and impact the overall
effectiveness of innovation processes. Our findings suggest that
the dynamic interplay between experiential learning and
strategic decision-making is crucial for fostering adaptable and
successful design innovation in complex, cross-disciplinary
environments.
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1. INTRODUCTION

In today's rapidly evolving technological and societal
landscape, design innovation stands as a critical driver for
progress across diverse fields, including engineering,
business, and cultural development. The process of design
often involves navigating complex trade-offs and
uncertainties, where decisions can be guided by established
principles or by a more flexible, outcome-oriented approach.
This inherent tension between adherence to predefined rules
and the pursuit of optimal outcomes through cost-benefit
analysis (CBA) is a fundamental aspect of design strategy.
Traditional methodologies often emphasize adherence to best
practices and established rules [1], while the dynamic nature
of modern challenges frequently necessitates adaptive
strategies that can learn from the consequences of past
decisions.

Drawing parallels from recent advancements in
understanding human decision-making, particularly in the
realm of moral cognition, this paper investigates how
learning from the outcomes of design choices shapes the
reliance on different innovation strategies.
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Specifically, the concept of metacognitive design
learning is examined, where design teams or individual
designers adapt their strategic approach (e.g., rule-based
design vs. CBA-driven design) based on the perceived
success or failure of previous design outcomes. This
perspective moves beyond static models of design decision-
making, proposing a dynamic framework where experience
plays a crucial role in shaping future strategic choices.

Empirical evidence indicates that individuals adapt their
reliance on moral rules versus cost-benefit reasoning based
on the consequences of their decisions, highlighting the
malleability of decision strategies through experiential
learning [2]. Similar mechanisms are posited to operate in
the design domain, where the "moral" evaluation of an
outcome translates into a "design effectiveness" evaluation.
For instance, a design team might initially adhere strictly to a
set of established design principles (rule-based design).
However, if projects consistently fail to meet market
demands or user needs despite following these rules, the
team might adapt by increasingly relying on a more flexible,
outcome-driven approach that prioritizes cost-benefit
analysis and iterative refinement [3]. Conversely, if a CBA-
driven approach consistently leads to unforeseen negative
consequences or ethical dilemmas, the team might revert to a
more rule-based strategy.

This paper aims to achieve several objectives. First, it
proposes a theoretical framework for metacognitive design
learning, adapting concepts from reinforcement learning and
meta-control systems to the context of design innovation.
Second, it outlines a methodology for design scenarios that
allow for the observation and measurement of adaptive
changes in design strategy. Third, it explores how such
learning can lead to individual and team-level differences in
design strategy preferences and how this learning transfers to
novel design challenges. Finally, the implications of these
findings are discussed in relation to fostering adaptable and
successful design innovation in complex, cross-disciplinary
environments, with emphasis on the importance of feedback
loops and outcome evaluation in design education and
practice.

This research contributes to the fields of design theory,
innovation management, and cognitive science by providing
a novel perspective on how design strategies evolve through
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experience. By understanding the mechanisms of
metacognitive design learning, more effective training
programs for designers can be developed and organizational
cultures that promote adaptive and resilient innovation
processes can be cultivated. This work also lays the
groundwork for future empirical studies and computational
models that can further elucidate the intricate relationship
between learning, decision-making, and successful design
outcomes.

2. RELATED WORK

The study of design decision-making has a rich history,
with various models and theories proposed to explain how
designers navigate the complexities of the design process.
Traditional models often emphasize a rational, problem-
solving approach, where design is seen as a systematic
process of defining problems, generating solutions, and
selecting the optimal choice based on predefined criteria
[4][5]. While these models provide a structured framework,
they often oversimplify the dynamic and unpredictable
nature of real-world design challenges. More recent research
highlights the role of intuition, experience, and cognitive
biases in shaping design decisions, suggesting that designers
often rely on heuristics and tacit knowledge rather than
purely rational analysis [6][7].

In the field of innovation management, various strategies
have been explored to foster creativity and successful
product development. These range from structured, top-
down approaches such as Stage-Gate models [8] to more
agile and iterative methodologies like Lean Startup and
Design Thinking [9][10]. While these frameworks offer
valuable guidance, they often lack a detailed account of how
individuals and teams learn and adapt their strategies over
time. The concept of organizational learning has been
explored in this context, but it typically focuses on the
accumulation of knowledge and best practices rather than the
dynamic adaptation of decision-making strategies at the
individual or team level [11].

The notion of metacognition, or '"thinking about
thinking," has gained increasing attention in cognitive
science and education as a key factor in effective learning
and problem-solving [12]. Metacognitive skills enable
individuals to monitor and regulate their own cognitive
processes, including their choice of learning strategies. In the
context of design, metacognition can be seen as the ability of
designers to reflect on their own design process, identify

areas for improvement, and adapt their strategies accordingly.

However, the specific mechanisms of metacognitive learning
in design, particularly in relation to the trade-off between
rule-based and CBA-driven approaches, remain largely
unexplored.

Reinforcement learning (RL) perspectives on decision-
making provide useful insights, having been successfully
applied to a wide range of domains, from game playing to
robotics [13]. The core idea of RL is that agents learn to
make better decisions by receiving feedback (rewards or
punishments) from their environment. In design, the
"reward" can be understood as the perceived success or
failure of a design outcome. While applications of RL in
design optimization have been examined [14], the present
research focuses on a higher level of learning: the adaptation
of decision-making strategies themselves. This approach is
inspired by studies on metacognitive moral learning, which
demonstrate that individuals can adjust their reliance on
different decision-making strategies based on the outcomes
of their choices.

The literature on design fixation and creativity further
indicates that designers can become stuck in familiar
patterns of thinking, limiting their ability to generate novel
solutions [15]. Metacognitive learning offers a potential
means of overcoming fixation by encouraging exploration of
different strategies and adaptation based on feedback. By
explicitly modeling the trade-off between rule-based design
and CBA-driven design, a more nuanced understanding
emerges of how designers can balance the need for structure
and efficiency with the need for flexibility and innovation.

Finally, research on cross-disciplinary collaboration and
innovation underscores the increasing complexity of design
problems, which often require the integration of knowledge
and expertise from multiple fields [16]. A metacognitive
framework provides a lens for understanding how teams
with diverse backgrounds and perspectives can coordinate
their decision-making strategies and achieve a shared
understanding of what constitutes a "good" design outcome.
Design scenarios in a cross-disciplinary context can further
illuminate how factors such as communication, trust, and
shared mental models influence the process of metacognitive
design learning [17][18].

3. METHODOLOGY AND SYSTEM DESIGN

To investigate metacognitive learning in design
innovation, we developed a computational framework that
produces the decision-making processes of designers in a
cross- disciplinary context. This framework allows us to
model how designers adapt their reliance on rule-based
design versus cost-benefit analysis (CBA) based on the
outcomes of their design choices. Our methodology is
inspired by the experimental paradigm of Maier et al. (2025)
and adapts it to the domain of design innovation.

3.1. A Theory of Metacognitive Design Learning

We propose a theory of metacognitive design learning
based on the principles of reinforcement learning (RL) and
meta-control. In this framework, designers employ two
primary decision-making strategies: rule-based design and
CBA-driven design. Rule-based design involves adhering to
established design principles, heuristics, and best practices.

CBA-driven design, on the other hand, involves a more
flexible, outcome-oriented approach where decisions are
made by weighing the potential costs and benefits of
different design choices.

We posit that a meta-control system governs the
selection of these strategies. This system learns to adapt its
strategy preferences based on the perceived effectiveness of
past design outcomes. When a design decision leads to a
successful outcome (e.g., high user satisfaction, market
success), the meta-control system reinforces the strategy that
led to that decision. Conversely, when a decision leads to a
poor outcome, the system reduces its reliance on the
corresponding strategy. This process of learning at the level
of strategies, rather than specific actions, is what we term
"metacognitive design learning."

3.2.  Computational Models of Design Learning

To formalize our theory, we developed two
computational models of metacognitive design learning: a
model-based approach and a model-free approach.

Model-Based Learning: The model-based learning
model uses a Bayesian framework to learn the
conditional probabilities of successful versus
unsuccessful outcomes for each design strategy. It
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maintains two beta distributions: one for the
probability that rule-based design will lead to a
successful outcome, and one for the probability that
CBA-driven design will lead to a successful outcome.
After each design decision, the model updates the
parameters of the corresponding beta distribution
based on the observed outcome. This allows the
model to build an explicit model of the effectiveness
of each strategy.

Model-Free Learning: The model-free learning model
uses a Q-learning algorithm to learn the expected
value (Q-value) of using each design strategy. The Q-
value represents the expected long-term reward of
relying on a particular strategy. After each design
decision, the model updates the Q-value of the chosen
strategy based on the observed outcome and a
learning rate parameter. The model is more likely to
select the strategy with the higher Q- value in future
decisions.

3.3.  Design Scenarios

To test our models, we created a series of design
scenarios that mimic the challenges faced by designers in a
cross-disciplinary context. Each scenario presents a design
dilemma where the designer must choose between an option
favored by rule-based design and an option favored by CBA-
driven design. The scenarios are designed to be realistic and
cover a range of design domains, from product design to
user experience (UX) design.

At the beginning of each experiment, the virtual design
agent is randomly assigned to one of two conditions: "Rule
Success" or "CBA Success." In the "Rule Success" condition,
the rule-based design option consistently leads to better
outcomes, while in the "CBA Success" condition, the CBA-
driven design option is more effective. The agent makes a
series of 13 design decisions, and after each decision, it
observes the outcome (e.g., "high user adoption," "negative
market feedback"). This allows us to track how the agent’ s
design strategy preferences evolve over time.

4. EXPERIMENTS AND RESULTS

To validate our theoretical framework and computational
models, we conducted a series of experiments using the
developed system. Our primary objective was to observe
whether metacognitive design learning occurs in design
scenarios and how it influences the adoption of rule-based
versus CBA-driven design strategies.

4.1. Adaptive Changes in Design Strategy

In Experiment 1, we collected 100 design agents for each
of the two conditions: "Rule Success" and "CBA Success."
Each agent participated in 13 sequential design dilemmas.
We tracked the proportion of agents choosing the CBA-
driven design option over the course of these dilemmas.

As predicted, agents in the "CBA Success" condition
showed a significant increase in their reliance on the CBA-
driven design strategy. The proportion of CBA choices
increased from an initial average of 52.1% (95% CI, [45.0%,
59.2%]) on the first dilemma to 70.5% (95% CI, [63.5%,
77.5%]) by the last dilemma. Conversely, agents in the
"Rule Success" condition exhibited a decrease in CBA
choices, with the proportion dropping from 50.8% (95% CI,
[43.7%, 57.9%]) to 40.2% (95% CI, [33.1%, 47.3%]). These
results demonstrate that design agents adapt their strategic

choices based on the perceived success of different design
approaches.

To further assess the robustness of these results, we
conducted additional statistical analyses using mixed-effects
logistic regression. The data in Figure 1 revealed a strong
main effect of condition (p < 0.001) and a significant
interaction between condition and trial number (p < 0.01),
confirming that strategy adaptation was not random
fluctuation but a systematic response to outcome
contingencies. Interestingly, the rate of adaptation differed
across agents: approximately 35% of agents in the "CBA
Success" condition converged almost exclusively on the
CBA-driven strategy after the seventh dilemma, whereas
others exhibited a more gradual adjustment across all 13
trials. This heterogeneity highlights that even within a
computational framework, individual learning trajectories
can diverge based on stochastic reinforcement histories,
mirroring the variability commonly observed in human
decision-making research.
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Figure 1. Proportion of CBA-driven design choices over 13 dilemmas in
Experiment 1.

4.2.  Transferability of Learned Strategies

Experiment 2 investigated the transferability of the
learned design strategies to novel design challenges. After
completing the 13 dilemmas in Experiment 1, agents were
presented with a new set of 5 design dilemmas that were
structurally similar but involved different content and
contexts. We measured the proportion of CBA choices in
these transfer dilemmas.

Our findings indicate that the learned strategies
successfully transferred to novel situations. Agents from the
"CBA Success" condition in Experiment 1 continued to
exhibit a higher proportion of CBA choices (average 68.1%)
in the transfer dilemmas compared to agents from the "Rule
Success" condition (average 42.5%). This suggests that
metacognitive design learning enables agents to generalize
their strategic preferences beyond the specific scenarios in
which they were trained.

In addition to mean choice proportions, we examined the
stability of strategy preferences across transfer dilemmas. A
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repeated-measures ANOVA indicated that the strategy
distribution remained consistent across all five transfer tasks
(F(4,196) = 0.82, n.s.), suggesting that once established,
strategic preferences were not easily disrupted by changes in
surface-level task features. This pattern supports the notion
that metacognitive design learning occurs at an abstract level,
influencing overarching decision frameworks rather than
isolated choices. Moreover, the transfer effect appeared
stronger in agents with more extreme preferences at the end
of Experiment 1, implying that the degree of commitment to
a given strategy can amplify generalization.

4.3. Impact of Learning on Design Effectiveness

In Experiment 3, we evaluated the impact of
metacognitive  design learning on overall design
effectiveness. We introduced a metric for design
effectiveness that considers both the quality of the design
outcome and the efficiency of the design process. We
compared the effectiveness scores of agents that underwent
metacognitive learning with those of control agents that
maintained a fixed design strategy.

Results showed that agents capable of metacognitive
design learning achieved significantly higher design
effectiveness scores (average 0.75) compared to control
agents (average 0.55). This improvement was attributed to
the adaptive nature of metacognitive learning, which allowed
agents to converge on more effective strategies over time.
This experiment highlights the practical benefits of fostering
metacognitive learning capabilities in design teams.

A more fine-grained analysis revealed that learning-
enabled agents achieved superior effectiveness not only in
terms of average scores but also in consistency across trials.
The variance of performance was substantially lower in the
metacognitive group (SD = 0.08) compared to the control
group (SD = 0.15), suggesting that adaptive learning
promotes more reliable performance in uncertain
environments. Furthermore, post-hoc comparisons indicated
that CBA-driven strategies yielded particularly strong gains
in scenarios involving complex trade-offs and user-centered
considerations, while rule-based strategies remained
advantageous in  contexts emphasizing regulatory
compliance or ethical constraints. This pattern suggests that
metacognitive flexibility-rather than the dominance of one
strategy over the other-is the key driver of design
effectiveness.

4.4. Computational Model Analysis

We analyzed the performance of our model-based and
model-free learning algorithms. Both models successfully
captured the adaptive changes in design strategy observed in
Experiment 1. However, the model-based approach
demonstrated a slightly faster convergence rate and better
performance in scenarios with higher uncertainty, suggesting
its ability to leverage probabilistic reasoning more
effectively. The model-free approach, while simpler, proved
robust in stable environments.

Further analysis of the model parameters revealed that
the learning rate played a crucial role in the speed of
adaptation, while the initial bias towards either rule-based or
CBA-driven design influenced the initial trajectory of
learning. These insights provide valuable guidance for
optimizing learning processes in real-world design contexts.

To explore this further, we compared the predictive
accuracy of the two models against empirical agent behavior
using log-likelihood estimates. As shown in Figure 2, The

model-based algorithm explained 87% of the variance in
observed choices, compared to 79% for the model-free
algorithm. This difference was especially pronounced in the
early phases of learning, where the Bayesian updating
mechanism enabled faster discrimination between successful
and unsuccessful strategies. In contrast, the Q-learning
model demonstrated superior parsimony, requiring fewer
computational resources and fewer parameters to achieve
stable performance. This trade-off between accuracy and
efficiency closely parallels debates in cognitive science
regarding the coexistence of heuristic and deliberative
processes in human reasoning.
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Figure 2. Comparison of Design Effectiveness Scores between
Metacognitive Learning Agents and Control Agents in Experiment 3.

5. ANALYSIS AND DISCUSSION

Our findings provide compelling evidence for the
existence and significance of metacognitive design learning,
a process by which designers adapt their strategic reliance on
rule-based versus cost-benefit analysis (CBA) approaches
based on the observed outcomes of their design decisions.
This adaptive mechanism is crucial for navigating the
complexities and uncertainties inherent in modern design
innovation, particularly in cross- disciplinary contexts.

One of the most important insights from these results is
that design learning operates on at least two interdependent
levels: (1) the procedural level, where specific actions or
heuristics are refined, and (2) the metacognitive level, where
entire strategies are selected, reinforced, or abandoned. This
two-tiered structure resonates with the dual-process theories
of cognition, which propose a fast, intuitive system and a
slower, deliberative system. Our findings suggest that
effective design innovation relies not on privileging one
system over the other but on flexibly coordinating between
them in response to outcome feedback.

The observed adaptive changes in design strategy
(Experiment 1) directly support our central hypothesis:
designers do not rigidly adhere to a single approach but
rather dynamically adjust their strategies in response to
feedback from the environment. This dynamic adaptation is
a hallmark of intelligent systems and suggests that design
expertise is not merely about accumulating a repertoire of
fixed rules but also about developing the meta-cognitive
capacity to select and apply the most appropriate strategy for
a given situation.

The observed adaptive changes in design strategy
(Experiment 1) directly support our central hypothesis:



Learning from Outcomes Shapes Design Innovation Strategies: A Cross-Disciplinary Approach

designers do not rigidly adhere to a single approach but
rather dynamically adjust their strategies in response to
feedback from the environment. This dynamic adaptation is
a hallmark of intelligent systems and suggests that design
expertise is not merely about accumulating a repertoire of
fixed rules but also about developing the meta-cognitive
capacity to select and apply the most appropriate strategy for
a given situation. The clear trends in both "Rule Success"
and "CBA Success" conditions demonstrate the sensitivity of
our agents to outcome feedback, mirroring the adaptive
behavior observed in human decision-making.

The successful transfer of learned strategies to novel
design challenges (Experiment 2) further underscores the
power of metacognitive design learning. This transferability
indicates that the learning occurs at a higher, more abstract
level-the level of decision- making strategies-rather than
merely at the level of specific actions or design solutions.
This is a critical distinction, as it implies that designers can
generalize their strategic insights across different domains
and problem types, a key characteristic of expert
performance. For instance, a designer who learns the
effectiveness of a CBA approach in a software development
project might apply similar reasoning when designing a new
physical product, even if the specific rules and constraints
differ.

The improved design effectiveness observed in
metacognitive learning agents (Experiment 3) highlights the
practical implications of our research. By dynamically
adjusting their strategies, these agents were able to achieve
superior outcomes, suggesting that fostering metacognitive
learning capabilities in design teams can lead to more
successful innovation. This finding has significant
implications for design education and professional
development, emphasizing the need to cultivate not only
technical skills but also the adaptive capacity to learn from
experience and optimize strategic choices. Organizations
should consider implementing feedback mechanisms and
outcome tracking systems that enable design teams to reflect
on their decisions and refine their approaches over time.

Our analysis of computational models revealed that both
model-based and model-free learning mechanisms can drive
metacognitive design learning. The slight advantage of the
model-based approach in uncertain environments suggests
that explicit probabilistic reasoning about strategy
effectiveness can be beneficial when outcomes are less
predictable. However, the robustness of the model-free
approach in stable environments indicates its utility for rapid
adaptation in familiar contexts. This duality mirrors the dual-
process theories of cognition, where both intuitive (model-
free) and deliberative (model- based) processes contribute to
decision-making. Future research could explore how these
two learning mechanisms interact and are balanced in human
designers.

While our environment provides a controlled setting for
studying metacognitive design learning, it is important to
acknowledge its limitations. The complexity of design
problems, the richness of human social interaction within
design teams, and the nuanced nature of design outcomes are
simplified in our models. Future work should aim to validate
these findings in more ecologically valid settings, such as
through empirical studies with human design teams or by
integrating our models into more sophisticated design
platforms. Additionally, exploring the role of different types
of feedback (e.g., immediate vs. delayed, quantitative vs.
qualitative) and the influence of individual differences in

learning styles would be valuable avenues for future research.

6. CONCLUSION

This paper introduced the concept of metacognitive
design learning, a novel framework that explains how
designers and design teams adapt their strategic reliance on
rule-based versus cost-benefit analysis (CBA) approaches
based on the observed outcomes of their design decisions.
Drawing inspiration from the principles of metacognitive
learning and reinforcement learning, we developed
computational models and design scenarios to demonstrate
this adaptive process.

Our findings indicate that design agents exhibit
significant adaptive changes in their strategic choices,
increasing their reliance on the design approach that
consistently yields better outcomes. This learning was shown
to be transferable to novel design challenges, suggesting that
the adaptation occurs at a higher, more abstract level of
decision-making strategies rather than merely at the level of
specific actions. Furthermore, our experiments demonstrated
that agents capable of metacognitive design learning
achieved significantly higher design effectiveness scores
compared to control agents, highlighting the practical
benefits of this adaptive capacity.

The analysis of our computational models revealed that
both model-based and model-free learning mechanisms can
drive metacognitive design learning, with the model-based
approach showing advantages in uncertain environments.
These insights contribute to a deeper understanding of how
design expertise evolves through experience and how
designers can balance adherence to established rules with
flexible, outcome-driven reasoning.
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