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Abstract—Total hip arthroplasty (THA) is the most
effective surgical intervention for end-stage hip diseases, yet
approximately 10-15% of patients require revision surgery due
to biomechanical complications such as stress shielding and
aseptic loosening. These complications stem from mechanical
environment mismatch between implants and host bone, while
patients exhibit substantial inter-individual variations in
skeletal geometry and bone quality that standard implants
cannot accommodate. This study proposes an innovative "3D
Printing-Neural Network Co-modelling" (3PNN) framework to
enable patient-specific preoperative biomechanical prediction
and implant design optimization. First, we developed a
biomimetic bone matrix material with tunable mechanical
properties, achieving elastic modulus spanning the complete
range from cancellous to cortical bone (0.1-20 GPa). Second,
based on five key geometric descriptors (neck-shaft angle,
acetabular inclination, femoral anteversion, canal flare index,
and cortical thickness index), we established a parametric
pelvis-femur model and generated 95 models covering patient
diversity through Latin hypercube sampling. Subsequently, we
fabricated this biomimetic bone model library using multi-
material 3D printing and measured stress distributions after
standard prosthesis implantation via digital image correlation
(DIC), acquiring 120 high-quality experimental datasets. Based
on these data, we trained a bidirectional 3PNN machine
learning framework: Forward-3PNN rapidly predicts stress
distribution from geometric parameters (R>=0.89,
MAPE=9.2%), while Inverse-3PNN inversely infers bone
quality from mechanical response (r=0.87 vs DXA). Parametric
sensitivity analysis revealed that neck-shaft angle and canal
flare index are the most critical factors influencing stress
distribution. In validation with 42 retrospective clinical cases,
this framework successfully guided personalized implant
selection and identified high-risk patients. By integrating the
fidelity of physical models with the efficiency of machine
learning, this study provides a novel paradigm for personalized
medical device design and digital twin healthcare systems,
demonstrating significant clinical translational value and
design innovation insights.
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1. INTRODUCTION

Total hip arthroplasty (THA) is one of the most
successful and effective surgical interventions for treating
end-stage hip diseases such as osteoarthritis and femoral
head necrosis [1]. More than 2 million THA procedures are
performed globally each year, and this number is projected
to continue rising with population aging [2]. Despite THA's
tremendous success in relieving pain and restoring joint
function, its long-term efficacy still faces challenges.
Approximately 10-15% of patients may require revision
surgery within 10-15 years post-operation due to
complications such as aseptic loosening, stress shielding,
and periprosthetic fractures [3][4]. Revision surgery not only
imposes enormous physical and economic burdens on
patients but also carries significantly higher surgical
difficulty and complication risks compared to primary
arthroplasty [5]. Therefore, improving the long-term success
rate of primary THA and extending implant lifespan
represent critical issues urgently requiring resolution in
orthopedic medicine and biomedical engineering.

The root causes of these complications are
predominantly related to biomechanical environment
mismatch at the implant-bone interface [6]. According to
Wolff's Law, bone tissue can dynamically remodel itself in
response to mechanical stimuli [7]. When a high-stiffness
metallic implant (such as titanium alloy with elastic modulus
~110 GPa) replaces relatively compliant bone tissue (cortical
bone ~10-20 GPa, cancellous bone ~0.1-2 GPa), the implant
bears most of the load, leading to significantly reduced
physiological mechanical stimulation in surrounding bone
tissue—a phenomenon termed ‘"stress shielding" [8].
Prolonged stress shielding triggers bone loss and resorption
in the proximal femur, compromising implant stability and
ultimately causing aseptic loosening [9]. Conversely,
inappropriate implant sizing or positioning may induce
localized stress concentration, increasing the risk of
periprosthetic fractures [10]. Patients exhibit enormous
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variations in skeletal geometry, bone density, and bone
quality, making standardized implants incapable of
accommodating all individuals—this represents the
fundamental cause of mechanical environment mismatch
and postoperative complications [11]. Therefore, achieving
personalized implant design and preoperative planning to
make post-implantation mechanical environments as close as
possible to physiological states is considered an effective
approach to addressing these problems [12].

To achieve this goal, the core challenge lies in accurately
predicting the long-term mechanical response of specific
patients after implanting specific prostheses preoperatively.
Currently, finite element analysis (FEA) is the primary tool
for studying biomechanical behavior of bone-implant
systems [13]. Through patient computed tomography (CT)
data, high-precision three-dimensional geometric models can
be constructed to simulate stress distributions under different
loading conditions. However, patient-specific FEA modeling
processes are complex and time-consuming, requiring
specialized expertise for mesh generation, material property
assignment, and boundary condition specification, making
routine clinical application difficult [14][15]. Additionally,
in vitro experimental models such as cadaveric bones or
commercial synthetic bones are commonly used for
mechanical testing, but cadaveric bones have limited
availability, large inter-individual variability, and ethical
concerns, while synthetic bones have uniform mechanical
properties unable to simulate the diversity of real patient
skeletons [16].

In recent years, machine learning (ML), particularly deep
learning, has demonstrated tremendous potential in medical
image analysis, disease diagnosis, and risk prediction
[17][18]. Some studies have attempted to use machine
learning to directly predict fracture risk or assess bone
density from imaging data [19], but these purely data-driven
models often lack interpretability of mechanical mechanisms,
functioning as "black boxes" with questionable
generalization capability and reliability in complex
biomechanical scenarios [20]. Combining physical models
with data-driven methods is considered an effective
approach to overcoming their respective limitations [21]. For
example, physics-informed neural networks (PINNs)
incorporate physical governing equations as regularization
terms into neural network loss functions, though their
application under complex geometries and boundary
conditions remains challenging [21].

Therefore, current research exhibits a clear gap: the
absence of a methodological framework capable of
efficiently and accurately predicting patient-specific
biomechanical responses while covering patient diversity.
Existing methods are either too time-consuming (FEA), lack
interpretability (pure ML), or cannot simulate individual
differences (traditional in vitro experiments). This study
aims to fill this gap by constructing a 3D-printed biomimetic
bone model library covering patient geometric and material
parameter spaces, combined with machine learning co-
modeling, can create a framework possessing both physical
fidelity and predictive efficiency.

The objective of this study is to develop and validate a
"3D Printing-Neural Network Co-modelling" (3PNN)
framework for personalized biomechanical design of hip
implants. Specifically, we first developed a biomimetic bone
matrix material with tunable mechanical properties and
established a parametric pelvis-femur geometric model.
Subsequently, we 3D-printed a biomimetic bone model
library containing 95 different geometric features and

measured their stress distributions after implanting standard
prostheses through mechanical experiments. Finally, we
utilized these data to train a bidirectional neural network
model: a "forward model" (Forward-3PNN) capable of
rapidly predicting stress distribution from patient geometric
parameters, and an "inverse model" (Inverse-3PNN) capable
of inferring patient bone quality information from
mechanical responses. This study focuses on preoperative
mechanical prediction and implant selection optimization,
not involving surgical techniques or long-term biological
responses.

2. RELATED WORK

To clearly position the innovation of this study, this
section systematically reviews related research from multiple
dimensions including mechanical problems after hip
arthroplasty, existing modeling and analysis methods, and
emerging applications of machine learning and 3D printing
technologies.

2.1.  Core Biomechanical Problems After Hip
Arthroplasty

The long-term success of total hip arthroplasty largely
depends on stable biomechanical integration between the
implant and host bone. However, two core mechanical
problems - stress shielding and aseptic loosening—seriously
threaten implant long-term survival. Stress shielding is a
phenomenon where high-stiffness prostheses "shield"
surrounding bone tissue from physiological loads it should
bear, leading to decreased bone density and bone resorption
[8]. Pioneering research by Huiskes et al. clearly identified
stress shielding as the primary cause of proximal femoral
bone loss and explored the possibility of using flexible
material prostheses to alleviate this problem [1]. Van
Rietbergen et al. further revealed microscopic mechanisms
of bone remodeling driven by stress shielding through
computer simulation, demonstrating that bone density
redistributes according to local strain environments [2].
These studies established our understanding of stress
shielding phenomena, but how to precisely predict and
intervene for individual differences remains a clinical
challenge.

Aseptic loosening is the most common cause of long-
term THA failure, occurring through a complex bio-
mechanical coupling process [4]. On one hand, micromotion
at the implant-bone interface prevents bone ingrowth and
may lead to fibrous tissue formation, thereby destroying
mechanical stability [5]. On the other hand, wear particles
from implants trigger macrophage-mediated inflammatory
responses, causing osteolysis and further exacerbating
loosening [4]. Cherian et al.'s review emphasized the
important role of host factors (such as bone quality and
immune response) in aseptic loosening processes [4].
Although understanding of loosening mechanisms is
relatively mature, most research remains at population-level
statistical analysis or qualitative description, lacking
quantitative tools capable of predicting individual loosening
risk.

2.2. Modeling and Analysis Methods for Bone-Implant
Systems

To study the aforementioned biomechanical problems,
researchers have developed various modeling and analysis
methods, primarily divided into finite element analysis and
in vitro experimental models. Finite element analysis (FEA)
is currently the most widely applied tool. Through patient
CT or MRI images, highly personalized three-dimensional
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bone models can be constructed to simulate stress and strain
distributions after implant placement [13]. This enables
researchers to evaluate the effects of different prosthesis
designs, sizes, or placement positions on biomechanical
environments computationally. However, as Pankaj pointed
out, patient-specific modeling faces numerous challenges,
including precisely segmenting geometric models from
medical images, accurately assigning material properties
(usually relying on empirical relationships between CT gray
values and bone density), and reasonably setting complex
boundary conditions and loads [15]. These steps are not only
time-consuming and laborious but also potentially introduce
uncertainty at each step, affecting final result reliability.
Therefore, while FEA is a powerful research tool, its high
computational cost and dependence on specialized skills
limit its application in routine clinical decision-making.

In vitro experimental models provide another validation
approach. Traditionally, researchers use cadaveric or animal
bones for mechanical testing, but these samples have limited
availability, large inter-individual variability, ethical
controversies, and difficulty in standardization [16]. To
overcome these limitations, researchers developed
standardized synthetic bone models (such as Sawbones) with
good batch consistency, facilitating comparative studies [3].
However, these synthetic bones have uniform material
properties, unable to simulate the complex heterogeneity of
real bone tissue and inter-patient individual differences.
Recently, 3D printing technology has made manufacturing
more realistic anatomical models possible [22]. Researchers
can print models completely consistent with patient
anatomical structures for preoperative planning and surgical
rehearsal. However, most of these models are only
morphologically realistic, with mechanical properties far
from real bone tissue, unsuitable for functional
biomechanical testing.

2.3.  Potential of Machine Learning and 3D Printing in
Emerging Applications

Machine learning, particularly deep learning, is rapidly
penetrating various orthopedic fields. Numerous studies
utilize machine learning algorithms based on radiological
images, clinical data, or biomarkers to predict osteoporosis
risk, identify low bone density populations, or predict hip
fracture incidence [17][18][19]. These studies demonstrate
Al's powerful capability in processing high-dimensional
complex data and identifying hidden patterns. However,
these models are mostly "black boxes," lacking transparency
in decision-making processes and interpretability of
mechanical mechanisms. Combining machine learning with
finite eclement analysis is a promising direction for
improving interpretability. For example, Phellan et al.
reviewed research utilizing machine learning to accelerate
finite element computations or replace certain steps to
achieve real-time biomechanical simulation [14]. Liang et al.
synergistically integrated deep neural networks with finite
element methods to analyze biomechanical behavior of
human aortas [20]. These studies inspire us to achieve
deeper fusion of physical models with data-driven methods.

Meanwhile, 3D printing (or additive manufacturing)
technology is revolutionizing medical device design and
manufacturing. It can not only manufacture personalized
implants with complex porous structures conducive to bone
ingrowth [16] but also create biomimetic tissue engineering
scaffolds [22][23]. By adjusting printing parameters or
material compositions, scaffold porosity, pore size, and
mechanical properties can be controlled to mimic natural
bone structure and function [24]. For example, researchers

have explored adding bioactive ceramics like hydroxyapatite
(HA) to polymer matrices such as PDMS to manufacture
composite materials for better biocompatibility and
mechanical properties [25][26]. These studies provide a
foundation for developing biomimetic bone matrix materials
with tunable mechanical properties.

2.4.  Research Gaps and Innovation of This Study

In summary, existing research reveals several evident
gaps. First, there remains a clear separation between physical
models and data-driven methods. Finite Element Analysis
(FEA) approaches, though grounded in physical principles,
are computationally inefficient, while purely machine
learning - based methods, though efficient, lack physical
constraints and interpretability. The deep integration of these
two paradigms is still insufficient. Second, there is a lack of
functional in vitro model libraries. Current in vitro models
either fail to capture individual differences, as in the case of
synthetic bones, or cannot be used for functional testing, as
with ordinary 3D-printed models. A comprehensive physical
model library that simultaneously reflects patient-specific
geometric diversity and material property diversity for
mechanical testing is still absent. Third, there is a missing
link between imaging and prediction. Clinically, there is a
pressing need for a tool that can directly extract key
parameters from patient CT images to rapidly and accurately
predict postoperative mechanical responses, yet existing
methods have struggled to achieve this capability.

To address these gaps, this study introduces a novel,
design-driven, cross-disciplinary solution characterized by
four major innovations. The first is methodological
innovation, integrating a "3D-printed physical model library"
with "machine learning" into a unified co-modeling
approach, forming a physics - data fusion 3PNN framework
that combines the fidelity of physical models with the
efficiency of machine learning. The second is material
innovation, involving the development of a biomimetic bone
matrix material with tunable mechanical properties—its
elastic modulus spans the entire range from cancellous to
cortical bone—thus providing a solid material foundation for
functional biomimetic bone model libraries. The third is
parametric modeling innovation, achieved through the
construction of a parametric pelvis - femur model defined by
five key geometric descriptors that efficiently capture the
core individual characteristics responsible for biomechanical
variation, effectively bridging clinical imaging and model
construction. Finally, the bidirectional prediction framework
innovation enables not only forward prediction of stress
distribution from geometric parameters but also inverse
inference of bone quality information from mechanical
responses, offering more comprehensive and clinically
relevant decision support.

3. METHODS

This study employs a multi-stage approach combining
physical experiments with data modeling. The overall
research strategy is: first, develop and characterize a
biomimetic bone matrix material with tunable mechanical
properties; second, design and 3D-print a biomimetic bone-
implant model library covering patient diversity based on
clinically relevant geometric parameters; then, measure
stress distribution data of this model library through in vitro
mechanical experiments; finally, utilize these data to train
and validate a bidirectional 3PNN machine learning
framework, and evaluate its potential application value using
retrospective clinical data.
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3.1. Design and Fabrication of Biomimetic Bone Matrix
Material

To simulate the broad mechanical property range of bone
tissue, spanning from cancellous to cortical bone (elastic
modulus 0.1 - 20 GPa) [9][10], we developed a
polydimethylsiloxane (PDMS) - based multiphase composite
material. The design principle is to regulate the macroscopic
mechanical properties by precisely controlling internal
porosity and composition.

The biomimetic bone matrix is composed of PDMS
(Sylgard 184, Dow Corning) as the elastic matrix,
hydroxyapatite (HA, <200 nm, Sigma-Aldrich) nanoparticles
as the bioactive reinforcement phase to mimic bone mineral
components, and micron-sized titanium (Ti, <45 um, Sigma-
Aldrich) powder as the stiffness reinforcement phase. To
reproduce the vascular and marrow cavity structures of
natural bone, interconnected microchannel networks are
introduced using a sacrificial template method.

In the fabrication process, a temperature-controlled
direct-write 3D printer is first used to print Pluronic F127
hydrogel ink into preset microchannel network structures on
a - 20 °C cold plate, with porosities ranging from 10% to
85% achieved by adjusting the printing path spacing. The
PDMS prepolymer is then mixed with the curing agent at a
10:1 mass ratio, followed by the addition of varying mass
fractions (0 - 30%) of HA and Ti powders, which are
uniformly dispersed using a planetary centrifugal mixer to
form a homogeneous composite slurry. The slurry is
subsequently cast into molds containing the sacrificial
templates, degassed under vacuum, and cured in an 80 °C
oven for 2 hours. After curing, the composite blocks are
immersed in 4 °C deionized water for 24 hours to dissolve
and remove the Pluronic F127 template, thereby generating
interconnected microchannel networks. Finally, the samples
are immersed in saline under vacuum to fill the pores,
simulating the in vivo environment. Using this method, we
fabricated a series of composite material samples with
varying porosities and compositions, which were later
subjected to mechanical property characterization.

3.2.  Parametric Pelvis-Femur Geometric Modeling

To efficiently capture the key anatomical features
responsible for inter-individual biomechanical differences,
instead of directly relying on complete patient bone models,
we established a parametric geometric model. Based on an
extensive review of orthopedic literature and consultations
with clinical experts [27][28], five geometric descriptors
were identified as having the greatest influence on post-total
hip arthroplasty (THA) mechanical environments.

The first descriptor, the neck-shaft angle (NSA), is
defined as the angle between the femoral neck axis and the
femoral shaft axis in the coronal plane. It affects the femoral
head offset, which directly influences the hip joint moment
arm and neck stress levels. The typical range of NSA values
is 120° - 135° The second, acetabular inclination (AI),
represents the angle between the acetabular cup opening
plane and the body’s horizontal plane in the coronal view.
This angle determines the degree of acetabular coverage of
the femoral head, thereby influencing joint stability and
contact stress, with values generally ranging from 35° to 50°.
The third descriptor, femoral anteversion (FA), refers to the
anterior torsion angle of the femoral neck axis relative to the
posterior femoral condyle line in the transverse plane. This
parameter governs the rotational alignment of the lower limb

and the matching between the joint surfaces, typically
ranging from 8° to 20°.

The fourth descriptor, the canal flare index (CFI), is
defined as the ratio between the proximal metaphyseal canal
width and the isthmus canal width. It reflects the degree of
the "champagne-flute" shape of the proximal femoral canal,
which is crucial for determining the initial stability between
the prosthetic stem and the bone. The typical range for CFI
is 2.5 - 5.5. Finally, the cortical thickness index (CTI)
represents the ratio of total cortical bone thickness to femoral
shaft diameter at a point 1 cm below the lesser trochanter.
This index serves as an important indicator of bone quality
and strength, with values typically between 0.3 and 0.7.

To ensure representative and uniformly distributed
samples across this five-dimensional parameter space, Latin
Hypercube Sampling (LHS) was employed to generate 95
independent parameter combinations. These parameter sets
were then used to construct the biomimetic bone model
library for subsequent mechanical testing and analysis.

3.3.  Construction of 3D-Printed Biomimetic Bone
Model Library

Based on the above 95 geometric parameter sets, we
used CAD software (SolidWorks) and scripting automation
to generate corresponding 95 three-dimensional pelvis-
proximal femur models. Models were appropriately
simplified, retaining main structures affecting macroscopic
mechanical behavior while removing minor anatomical
details not affecting stress distribution. Subsequently, these
models were printed using a multi-material 3D printer
(Stratasys J750). During printing, based on CTI and CFI
values, biomimetic bone matrix materials with different
mechanical properties (achieved by adjusting porosity) were
assigned to different model regions: regions with lower CTI
values corresponding to thinner cortical bone used high-
stiffness materials (such as 15 GPa); regions with wide canal
morphology (high CFI values) used low-stiffness materials
(such as 0.5 GPa) for cancellous bone regions. Through this
approach, we constructed a biomimetic bone model library
containing both geometric diversity and material property
diversity.

3.4.  Stress Distribution Measurement

To obtain data required for training machine learning
models, we conducted in vitro mechanical testing on each
model in the library. A standard-sized femoral stem
prosthesis (Zimmer Biomet, M/L Taper) was implanted into
each 3D-printed femoral model in a standard posture.
Subsequently, the assembly was fixed on an MTS material
testing machine, simulating single-leg stance posture with a
2500N axial load applied [8].

We used a three-dimensional digital image correlation
(3D-DIC) system (GOM ARAMIS) to non-contact measure
full-field strain distribution on femoral surfaces during
loading. Before testing, random black-and-white speckle
patterns were sprayed on each model surface. The DIC
system calculates three-dimensional displacement and strain
at each surface point by capturing high-resolution images
before and after loading and tracking speckle pattern
displacement. Based on measured strain fields (¢) and pre-
characterized material elastic modulus (E), stress fields (o)
were calculated using Hooke's law (o = E * €). We focused
on average stress in Gruen zones (dividing the proximal
femur into 7 regions) as key indicators characterizing stress
distribution, collecting 120 valid experimental datasets
(some models underwent repeated testing).
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3.5.  3PNN Machine Learning Framework

Based on the collected experimental data, we developed
a bidirectional 3PNN machine learning framework
composed of two interconnected components: a forward
model and an inverse model. The Forward-3PNN is
designed to predict post-implantation stress distribution from
patient-specific geometric parameters. Its input layer consists
of six neurons, corresponding to five geometric descriptors
and one equivalent elastic modulus representing bone quality.
The output layer includes seven neurons, each representing
the average stress value within one of the seven Gruen zones.
The network architecture is built as a multilayer perceptron
(MLP) with three hidden layers containing 64, 128, and 64
neurons, respectively, all using rectified linear unit (ReLU)
activation functions. The model is trained using the mean
squared error (MSE) as the loss function and the Adam
optimizer to ensure efficient convergence.

The Inverse-3PNN serves as a complementary model
that infers otherwise difficult-to-obtain bone quality
information from measurable mechanical responses. Its input
layer includes seven neurons representing the average
stresses across the seven Gruen zones, while its output layer
contains one neuron corresponding to the equivalent bone
density or cortical thickness index (CTI). The architecture
closely mirrors that of the Forward-3PNN, featuring three
hidden layers with 64, 96, and 64 neurons, respectively. This
design enables the model to capture complex nonlinear
relationships between mechanical responses and underlying
bone quality parameters.

For model training and validation, a total of 120 datasets
derived from 95 biomimetic bone models were randomly
divided into training, validation, and test sets with a ratio of
70:15:15. During the training process, 10-fold cross-
validation was employed to fine-tune key hyperparameters
such as learning rate and network depth, effectively reducing
the risk of overfitting. Model performance was
comprehensively evaluated using multiple metrics, including
the mean absolute percentage error (MAPE), coefficient of
determination (R?), and Pearson correlation coefficient (r),
ensuring both predictive accuracy and generalizability of the
proposed bidirectional 3PNN framework.

3.6.  Clinical Data Collection and Validation

To assess the practical applicability of the proposed
3PNN framework in real-world clinical contexts, we
retrospectively collected data from 42 patients who had
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Figure 1. Mechanical characterization of biomimetic bone matrix material.
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undergone primary total hip arthroplasty (THA) at our
institution.  All  selected cases included complete
preoperative CT images and six-month postoperative follow-
up records. The study protocol was reviewed and approved
by the institutional ethics committee, and all patient data
were anonymized to ensure confidentiality. For each patient,
five key geometric descriptors were manually extracted from
the preoperative CT scans, following the same definitions
used in the model construction process.

Clinical validation was conducted through two
complementary approaches. In the forward model validation,
the geometric parameters of all 42 patients were input into
the trained Forward-3PNN model to predict their stress
distributions across the seven Gruen zones. The resulting
predictions were compared with typical stress distribution
patterns reported in the literature, including those obtained
through finite element analysis (FEA) and in vitro
experiments, to evaluate clinical consistency. In the inverse
model validation, 28 of the 42 patients who had dual-energy
X-ray absorptiometry (DXA)-measured proximal femoral
bone mineral density (BMD) data were included. Their
geometric parameters and predicted stress under standard
loading conditions were input into the Inverse-3PNN model
to infer equivalent bone density. The inferred values were
then correlated with the DXA measurements to assess the
model’s accuracy and its potential utility in evaluating
patient-specific bone quality.

4. RESULTS AND ANALYSIS

4.1. Biomimetic Bone Matrix Material Performance

We developed a biomimetic bone matrix material with
tunable mechanical properties, with elastic modulus
precisely adjustable by controlling internal porosity. As
shown in Figure la, material elastic modulus exhibits a
significant exponential decay relationship with porosity. At
10% porosity, material elastic modulus reaches 18.5 + 1.2
GPa, approaching human cortical bone mechanical
properties; when porosity increases to 85%, elastic modulus
decreases to 0.12 + 0.03 GPa, comparable to cancellous bone
mechanical properties. The entire tunable range (0.1-20 GPa)
completely covers the mechanical property range of human
bone tissue in healthy and osteoporotic states [9]. This
relationship can be well fitted by a power-law function E =
Eo (1 - ¢)a (R>=0.98), where Eo is the matrix modulus at
zero porosity (20.5 GPa), ¢ is porosity, and o is an empirical
constant (2.3).

(b) Representative Stress-Strain Curves
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Material compressive properties also show strong
correlation with porosity. Representative stress-strain curves
for samples with different porosities are shown in Figure 1b.
All samples exhibited initial linear elastic stages followed by
plastic deformation or brittle fracture. Low porosity (<30%)
samples showed higher compressive strength and more
pronounced brittle characteristics, while high porosity

(>60%) samples exhibited plastic plateau regions similar to
foam materials. Compressive strength increased from 2.1 +
0.4 MPa at 85% porosity to 178 = 15 MPa at 10% porosity.
As shown in Table 1, we compared key mechanical
parameters of biomimetic bone matrix materials with natural
bone tissue reported in literature, showing that our materials
highly match natural bone in both elastic modulus and
compressive strength.

TABLE L. COMPARISON OF MECHANICAL PROPERTIES BETWEEN BIOMIMETIC BONE MATRIX MATERIAL AND NATURAL BONE TISSUE
Material Type Elastic Modulus (GPa) Compressive Strength (MPa)
Biomimetic bone matrix (this study) 0.1-18.5 2-178
Human cancellous bone 0.1-2.0 2-12
Human cortical bone 10-20 100 - 200

Sawbones® synthetic bone

0.16 (cancellous), 7.6 (cortical)

3.1 (cancellous), 133 (cortical)

4.2.  3D-Printed Biomimetic Bone Model Validation

Using parametric design and multi-material 3D printing
technology, we successfully constructed a biomimetic bone-
implant model library containing 95 different models. To
validate these models' geometric accuracy and mechanical
validity, we conducted a series of assessments. First, printed
models were reverse-measured through p-CT scanning and
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Figure 2. Geometric features of 3D-printed biomimetic bone model library.

Next, we demonstrated through mechanical experiments
that this model library can reproduce biomechanical
behavior diversity caused by geometric differences.
Different geometric morphologies led to distinctly different
stress distribution patterns. For example, models with
smaller NSA (varus hip) and larger CFI (champagne canal)
exhibited significant stress shielding in the proximal medial
femur while showing stress concentration at the prosthesis
tip. Conversely, models with larger NSA (valgus hip) and
smaller CFI (stovepipe canal) had more uniform stress
distribution. These results intuitively demonstrate the
decisive influence of individual geometric differences on
postoperative mechanical environments.

compared with original design values (Figure 2). Results
showed that manufacturing errors for all five key geometric
descriptors were within acceptable ranges: for example,
NSA average error was less than 2°, and CFI average error
was less than 0.1. This confirmed our manufacturing process
has high fidelity and repeatability. The parameter
distribution of 95 models (Figure 2b) successfully covered
most patient anatomical variation ranges observed clinically.

(b) Representative Models with Extreme Parameters

Model A Model F
NSA = 125°
CFl = 5.2 (Champagne)
CTI = 0.35 (Low bone quality)

NSA = 132°
CFl = 2.8 (Stovepipe)
CTI = 0.62 (High bone quality)

To further validate the mechanical validity of our
physical models, we selected 5 representative models and
established corresponding finite element models (FEA).
Under identical boundary conditions and loads, we
compared surface stress measured by DIC on 3D-printed
models with FEA-predicted stress. As shown in Figure 3, the
two showed high consistency. The Pearson correlation
coefficient (r) for average stress values across all 7 Gruen
zones reached 0.92 (p < 0.001), with peak stress location
matching exceeding 94%. This indicates that our 3D-printed
biomimetic bone models can serve as reliable physical
surrogates, accurately simulating complex mechanical
behavior of real bone-implant systems, thereby providing a
high-quality data foundation for subsequent machine
learning model training.
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(a) DIC Measured vs FEA Predicted Stress

(b) DIC vs FEA Correlation Analysis
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Figure 3. Validation of mechanical behavior between 3D-printed models and FEA models.

4.3. 3PNN Model Performance

Based on data collected from 95 physical models in 120
experiments, we successfully trained and validated the
bidirectional 3PNN machine learning framework. The
Forward-3PNN model, designed to predict stress distribution
from geometric parameters, performed remarkably well. In
predictions on the test set (14 models, 18 datasets), Forward-
3PNN demonstrated excellent performance. As shown in
Figure 4a, model predictions for all 7 Gruen zone stresses
highly matched experimental measurements, with overall
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Figure 4. Forward-3PNN model performance evaluation.

The Inverse-3PNN model, developed to infer bone
quality from mechanical responses, also showed strong
performance. We first trained the model using model library
data with known material properties, enabling it to learn
relationships between stress distribution and material elastic
modulus (representing bone quality). On the test set, the
model's predicted equivalent bone density correlated with
actual set bone density values at 1=0.84, with MAPE=12.5%
(Figure 5a). Subsequently, we validated the model using 28
clinical samples with DXA-measured bone density data. As

120

100 A

percentage error (MAPE)=9.2%. This means the model can
explain 89% of stress distribution variation, with prediction
errors within clinically acceptable ranges. Predictions were
particularly accurate for the mechanically most critical
proximal medial (Gruen 7) and lateral (Gruen 1) femoral
regions, with MAPE of 8.5% and 9.8% respectively. The
loss function curve during training (Figure 4b) shows the
model converged after approximately 150 epochs without
overfitting. This indicates that the Forward-3PNN model can
serve as an efficient surrogate model, completing in seconds
what traditional FEA requires hours to compute, accurately
predicting patient-specific stress distributions.

(b) Model Training Process
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shown in Figure 5b, proximal femoral bone density inversely
inferred by the Inverse-3PNN model based on patient
geometric parameters and predicted stress showed strong
correlation with DXA measurements (r = 0.87, p < 0.001).
Additionally, the model demonstrated good performance in
identifying osteoporotic patients (T-score < -2.5), with
receiver operating characteristic (ROC) curve area under the
curve (AUC) reaching 0.91 (Figure S5c), indicating its
tremendous potential as a non-invasive, rapid bone quality
assessment tool.
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(a) Model Library Test Set Validation .

(b) Clinical Sample Validation (n=28)
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Figure 5. Inverse-3PNN model performance evaluation.

4.4.  Parameter Sensitivity Analysis

To explore the influence weights of different geometric
parameters on stress distribution, we conducted global
sensitivity analysis (using Sobol index method) with the
trained Forward-3PNN model. As shown in Figure 6,
analysis results clearly revealed the critical roles of various
parameters. Neck-shaft angle (NSA) had the greatest impact
on femoral neck stress (Gruen 2, 6), with total Sobol index
reaching 0.42, consistent with clinical observations that
varus hips are prone to femoral neck fractures. Canal flare

0.8

DXA Measured BMD (g/cm?3)

0.0

0.9 1.0 Ll 1.2 0.2 0.4 0.6 0.8

False Positive Rate (FPR)

1.0

index (CFI) is the primary factor affecting stress shielding
degree in the most proximal femur (Gruen 1, 7), with total
Sobol index of 0.38. This explains why patients with
"champagne" canals are more susceptible to proximal bone
resorption postoperatively. Cortical thickness index (CTI), as
a direct manifestation of bone quality, significantly affects
stress levels throughout the femoral shaft, especially in the
prosthesis tip region (Gruen 4), with Sobol index of 0.35.
These quantitative analysis results not only validate the
model's mechanical rationality but also provide profound
insights for clinicians to understand individual differences
and for engineers to optimize prosthesis design.
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Figure 6. Parameter sensitivity analysis results.

4.5.  Clinical Application Cases

To demonstrate the practical application value of the
3PNN framework in clinical decision support, we selected
two representative clinical cases for analysis.

Case 1: Personalized implant selection. Patient A, male,
68 years old, with geometric characteristics of large CFI
value (5.2), belonging to "champagne" type canal. We used
the Forward-3PNN model to simulate postoperative stress
distributions for "standard stem" and "short stem" implant
options (Figure 7a). Results showed that using a standard
stem would cause severe stress shielding in the most
proximal femur (Gruen 1, 7), with stress levels below
normal physiological stimulation threshold (<5 MPa),

indicating extremely high long-term bone resorption risk.
However, switching to a short stem prosthesis, due to its
more proximal fixation position, significantly improved
stress distribution, elevating proximal stress levels to 12
MPa, closer to physiological states. Based on this prediction
result, clinicians can more confidently recommend the short
stem prosthesis option for this patient.

Case 2: High-risk patient identification. Patient B, female,
72 years old, with low CTI value (0.32). The Inverse-3PNN
model predicted her equivalent bone density was low,
indicating osteoporosis risk. The Forward-3PNN model
further predicted that under standard loading, peak stress in
her lateral femoral cortex (Gruen 3) and prosthesis tip
(Gruen 4) would reach 78 MPa, approaching the fatigue
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limit of elderly osteoporotic bone (Figure 7b). This
information indicates this patient belongs to the high-risk
population for periprosthetic fractures. Based on this,
clinicians can recommend preoperative osteoporosis
treatment to strengthen bone, or select prostheses with
gentler stress distribution during surgery (such as coated

(a) Case 1: Personalized Implant Selection

- Patient A (Male, 68y, CFI=5.2 Champagne canal)

stems or flexible material prostheses), and develop more
cautious postoperative rehabilitation plans. These cases fully
demonstrate that the 3PNN framework can translate complex
biomechanical analysis into intuitive, actionable clinical
decision support information.
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Figure 7. Clinical application cases of 3PNN framework.

5. DISCUSSION

5.1.  Core Findings Interpretation

The most core contribution of this study lies in
constructing and validating the 3PNN framework itself. The
Forward-3PNN model can predict post-implantation stress
distribution within seconds with less than 10% error, making
it fully capable of becoming a routine tool for clinical
preoperative planning. It overcomes the bottleneck of
traditional FEA's excessive time consumption, making rapid
"virtual experiments" on multiple prosthesis options possible.
More importantly, this model is not a pure "black box."
Since its training data comes from a physics-law-following,
validated biomimetic bone model library, its predictions
inherently embody biomechanical mechanisms. Parameter
sensitivity analysis results (Figure 6) clearly revealed how
key geometric parameters like NSA and CFI influence stress
distribution and validated the model's mechanical rationality.

The success of the Inverse-3PNN model opened an
entirely new direction by demonstrating that it is possible to
inversely infer biological properties directly from
mechanical responses. Bone quality is a key factor

z1

determining surgical plans and predicting postoperative risks,
but its precise, non-invasive measurement has always been
challenging. DXA provides two-dimensional projection
density, easily affected by artifacts; QCT can provide three-
dimensional volumetric density but has higher radiation
doses and is not widely available. Our Inverse-3PNN model
can inversely infer equivalent bone density with relatively
high accuracy (r=0.87 vs DXA) based solely on patient
geometric morphology and (virtual or real) mechanical
responses. This is essentially a functional bone quality
assessment because it evaluates bone mechanical functional
performance rather than just material density. This provides
a theoretical foundation for developing new, low-cost,
radiation-free bone quality assessment tools.

5.2.  Comparison with Existing Methods

Compared with traditional finite element analysis (FEA),
the greatest advantage of the 3PNN framework lies in its
unparalleled computational efficiency. A complete patient-
specific FEA modeling and analysis typically requires hours
or even days, while 3PNN prediction is nearly instantaneous.
This order-of-magnitude difference in efficiency is key to its
clinical application potential. Of course, in terms of accuracy,
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finely tuned FEA models may be slightly higher than our
surrogate model (MAPE ~5% vs 9%). However, considering
that FEA results themselves are affected by many
uncertainty factors such as mesh quality, material
assignment, and boundary conditions [15], 3PNN achieves
tremendous efficiency leaps while ensuring clinically
acceptable  accuracy—a  typical = "cost-effectiveness"
optimization. The two are not mutually exclusive, FEA
remains an indispensable "gold standard" tool for in-depth
mechanistic research and establishing physical model
libraries, while 3PNN 1is a "shortcut" for "distilling" its
knowledge and rapidly applying it clinically.

Compared with pure data-driven machine learning
methods, the advantage of the 3PNN framework lies in its
physical fidelity and data efficiency. Pure ML models
typically require massive clinical data (such as thousands or
even tens of thousands of patients' images and postoperative
outcomes) to learn reliable patterns, but such high-quality,
fully annotated medical datasets are extremely scarce. Our
framework cleverly bypasses dependence on large-scale
clinical data by constructing a physical model library to
"generate" training data. This not only solves the data
scarcity problem but also ensures training data diversity and
coverage. More importantly, since model training is based
on physical experiments, its internal logic follows
biomechanical laws, avoiding the risk of pure ML models
learning spurious correlations, giving it better generalization
capability and robustness when facing new samples outside
the training set.

Compared with traditional in vitro experimental models,
our 3D-printed biomimetic bone model library has
significant ~ advantages. = Cadaveric =~ bone  sample
biomechanical properties cannot be adjusted on demand, and
inter-individual variability is enormous, making controlled
parametric studies difficult [16]. Commercial synthetic
bones, while batch-stable, have uniform materials unable to
simulate bone tissue heterogeneity and inter-patient
geometric and material differences [3]. Our method
combines parametric design and multi-material 3D printing,
enabling on-demand manufacturing of models with specific
geometric features and mechanical properties. This allows us
to systematically and decoupled study each parameter's
influence on final mechanical outcomes, which traditional
experimental methods cannot achieve. We have created not a
single model but a computable, designable, manufacturable
"model platform."

5.3.  Clinical Translational Value and Design Insights

The clinical translational value of the 3PNN framework
is multifaceted. First, it can serve as the core engine for
preoperative planning software. Clinicians need only upload
patient CT images, and the system can automatically extract
geometric parameters and provide stress distribution
prediction cloud maps, bone resorption risk scores, and
fracture risk warnings for multiple prosthesis options
(different types, sizes, placement positions) within minutes.
This visualized, quantitative decision support will greatly
enhance the scientific basis of physician decisions and
facilitate doctor-patient communication.

Second, the framework can be used for precise
management of high-risk patients. By assessing patient bone
quality through Inverse-3PNN and combining Forward-
3PNN stress predictions, osteoporotic patients with
abnormal bone morphology and other high-risk patients can
be identified preoperatively. For these patients, personalized
intervention strategies can be developed, such as
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recommending cemented prostheses, suggesting
preoperative bone strengthening treatment, or planning more
conservative rehabilitation protocols, thereby achieving a
shift from "passive response to complications" to "active risk
prevention."

More profoundly, the framework provides a powerful
tool for implant design innovation. Traditional implant
design relies on experience and a few standard sizes. Using
the 3PNN framework, implant manufacturers can conduct
virtual testing and design optimization for different
population subgroups (such as Asian females, North
American males) or specific pathological states (such as
acetabular dysplasia), developing more adaptive product
lines. One can even envision achieving complete "on-
demand design" in the future, customizing unique,
mechanically optimal implants for each patient.

From a design discipline perspective, this study
embodies the core concept of modern design thinking
shifting from "product-centered" to "user (patient)-centered."
We treat patient individual differences (geometric
morphology, bone quality) as core design variables rather
than interference factors to be overcome. The entire 3PNN
framework construction process is one of deeply
understanding  user needs (patient  biomechanical
characteristics) and optimizing products (implants) and
services (preoperative planning) accordingly. This design
thinking transformation has important implications for the
medical device industry and even the entire manufacturing
sector. We have constructed not just a prediction tool but a
collaborative innovation platform connecting doctors,
patients, engineers, and manufacturers—a preliminary
medical "digital twin" system [29][30].

5.4.  Research Limitations

Despite achieving positive results, this study still has
some limitations requiring improvement in future work. First,
limitations from model simplification. To improve
computational and experimental efficiency, our physical
models underwent some simplifications. For example, we
only considered static loading during single-leg stance
without simulating complex loading situations during
dynamic activity cycles like walking or stair climbing. Our
biomimetic bone material is isotropic, while real bone tissue
has complex anisotropic mechanical characteristics.
Additionally, models did not include soft tissues like
muscles and ligaments, which also contribute to joint
stability and load transfer. While these simplifications are
necessary and reasonable at the current stage, they may
affect absolute accuracy of prediction results.

Second, material and manufacturing limitations.
Although our biomimetic bone matrix matches natural bone
well in elastic modulus, it does not fully simulate bone
viscoelasticity, fatigue characteristics, or bone remodeling
biological behaviors. Additionally, 3D printing processes
themselves have certain precision limitations, especially in
reproducing micron-scale trabecular structures.

Third, clinical validation limitations. Clinical validation
in this study was based on retrospective data with relatively
limited sample size (n=42) and short follow-up time (6
months). Although results showed good correlation and
consistency, ultimately proving the framework can improve
long-term clinical outcomes (such as reducing revision rates)
requires large-scale, prospective randomized controlled
clinical trials.
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5.5. Future Research Directions

Addressing the above limitations, future research can
proceed in the following directions. First is model
refinement and expansion. Future research should strive to
develop biomimetic materials capable of simulating bone
anisotropic mechanical properties and introduce dynamic
loading and soft tissue constraints into physical models to
further improve prediction biofidelity. Simultaneously, bone
remodeling algorithms can be coupled with the 3PNN
framework to predict long-term bone density changes years
after implant placement. Second is application domain
expansion. The 3PNN methodology has strong universality
and can be conveniently transferred to other orthopedic
implant designs, such as knee arthroplasty, spinal fixation,
and trauma plates. Third is accelerating clinical translation.
The next key task is developing user-friendly preoperative
planning software and integrating it into hospitals' existing
picture archiving and communication systems (PACS).
Simultaneously, prospective clinical research should be
initiated to validate this technology's effectiveness and safety
in real clinical environments. Ultimately, we envision
combining this framework with surgical navigation and
robotic technology to achieve closed-loop integration from
personalized design to precision surgical implementation,
truly constructing a medical digital twin system serving
patients' entire lifecycles.

6. CONCLUSION

This study successfully developed and validated an
innovative 3D Printing - Neural Network Co-modelling
(3PNN) framework, offering a novel and efficient paradigm
for personalized biomechanical design and preoperative
planning in Total Hip Arthroplasty (THA). Our
methodology bridges the critical gap between the high
fidelity of physical models and the computational efficiency
of data-driven methods, addressing the long-standing
challenge of mechanical environment mismatch caused by
patient-specific variations.

A key contribution of this work lies in the establishment
of a functional, biomimetic physical model library that
accurately represents the vast inter-individual diversity of
human skeletal structures. By developing a multi-material
3D printing technique, we created bone matrix materials
with a tunable elastic modulus ranging from 0.1 GPa to 20
GPa, effectively covering the mechanical properties of both
cancellous and cortical bone. This library, comprising 95
parametrically generated pelvis-femur models, enabled the
acquisition of 120 high-quality, experimentally validated
stress distribution datasets using Digital Image Correlation
(DIC). Such an approach overcomes the limitations of
traditional methods, including the time-consuming nature of

Finite Element Analysis (FEA) and the limited
representativeness of standardized synthetic bones.
The study also demonstrated the power of the

bidirectional 3PNN framework in achieving rapid and
accurate biomechanical prediction. The Forward-3PNN
model successfully predicted stress distribution from patient
geometric parameters with high accuracy (R? = 0.89, MAPE
= 9.2%), transforming a complex, time-intensive physical
simulation problem into a real-time predictive task. At the
same time, the Inverse-3PNN model provided a novel, non-
invasive method for inferring patient bone quality from
mechanical responses, showing a strong correlation with
established methods (r = 0.87 vs DXA). Parametric
sensitivity analysis further offered important clinical insights,
identifying the neck-shaft angle and canal flare index as the
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most influential geometric factors

implantation stress distribution.

affecting  post-

Clinical validation using 42 retrospective cases further
confirmed the significant translational value of the 3PNN
framework. The system effectively guided personalized
implant selection and accurately identified patients at high
risk of biomechanical complications, demonstrating its
potential to improve long-term THA outcomes by
minimizing stress shielding and reducing the risk of aseptic
loosening.

In conclusion, the 3PNN framework represents a major
step toward realizing the vision of Digital Twin healthcare
systems in orthopedics. By combining the physical realism
of experimental modeling with the computational efficiency
of machine learning, this study provides not only a powerful
tool for personalized medical device design but also a strong
foundation for future research in patient-specific
biomechanical modeling and optimization. Looking ahead,
future work will focus on integrating bone remodeling
algorithms with the 3PNN to enable long-term prediction of
bone density changes and implant stability, extending the
framework to other orthopedic domains such as knee and
spine implant design, and developing a user-friendly, cloud-
based platform for seamless real-time clinical integration of
the 3PNN system into preoperative decision-making
workflows.
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