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Abstract—Amid the sweeping tide of digitalization, the field
of design is encountering unprecedented opportunities and
challenges. Vast data resources are rich with valuable user
experience (UX) and design information. However, traditional
design methodologies fall short in effectively integrating and
utilizing such diverse data. This study introduces an innovative
design theory and methodology for multimodal data fusion
based on the Culture, Society, Economy, and Technology
(CSET) framework. By constructing a UX-integrated design
information representation model, employing a dual data-
driven approach, and incorporating experimental design and
analysis, this research achieves effective fusion of user
experience data with design documentation. The goal is to
enhance design innovation capabilities and provide robust
support for comprehensive product performance across
multiple dimensions. The proposed methodology holds
significant theoretical and practical implications.

Keywords—CSET; Multimodal Data Fusion; Design
Innovation; User Experience; Data-Driven Design

I. INTRODUCTION

A. Research Background
In the current era, the rapid development of information

technology has generated a vast amount of data resources
(Ran Congjing et al., 2023). Social media platforms, e-
commerce websites, and similar channels have accumulated
extensive user-generated data containing valuable insights
into users' genuine feedback, preferences, and behavioral
patterns regarding products (Bai Yongqing et al., 2019).
Simultaneously, internal design documentation within
enterprises records crucial knowledge, including technical
specifications, design rationales, and past experiences (Wang
Wei et al., 2020). However, traditional design methodologies
struggle to handle these diverse and complex data (Liu He et
al., 2019).

On one hand, user experience (UX) information and
design information are often stored in separate systems
without effective integration mechanisms, making it difficult
for designers to comprehensively associate user needs with
design possibilities (Ma Feicheng et al., 2022). On the other
hand, traditional representations of design information
predominantly focus on functional aspects, failing to
adequately reflect user experience-oriented design
requirements. This limitation restricts the depth and breadth
of design innovation (Zhang Zhixiong et al., 2023).

B. Research Objectives
This study aims to propose a design theory and

methodology for multimodal data fusion based on the CSET

(Culture, Society, Economy, and Technology) framework to
address the deficiencies of traditional design approaches
(Shiyao, Xie et al., 2024). Specifically, the research seeks to
construct a comprehensive and systematic framework that
incorporates cultural, social, economic, and technological
factors to bridge the gap between UX information and design
information, enabling deep fusion of multisource data (Yan,
Chi, 2024). This foundation will facilitate the extraction of
valuable hidden insights within the data, providing robust
theoretical support and actionable methodological guidance
for design innovation (Zhou Lijie et al., 2023). Consequently,
the proposed approach is expected to enhance products'
comprehensive performance in cultural adaptability, social
impact, economic feasibility, and technological advancement
(Yang Chun et al., 2023).

C. Research Significance
From a theoretical perspective, this study introduces a

new paradigm and approach to interdisciplinary research in
design (Shi Xin et al., 2019; Ran Congjing et al., 2023). It
overcomes the limitations of single-source, function-oriented
traditional design theories by integrating diverse data types
and multidisciplinary perspectives, thereby enriching the
content and representation of design information.

From a practical standpoint, the proposed methodology
can enable designers to gain deeper insights into user needs
more efficiently and accurately identify potential design
opportunities (Liu Guifeng et al., 2022). This optimization of
the decision-making process can significantly enhance the
quality of product user experience, strengthen market
competitiveness, and generate greater commercial value for
enterprises (He Ying et al., 2020).

II. RELATEDWORK

A. User Experience Analysis
As user experience (UX) increasingly takes center stage

in product design, researchers have explored it from various
dimensions (Luo Shijian et al., 2023). Early studies primarily
relied on traditional methods such as questionnaires and user
interviews to collect UX data. While these methods directly
capture users’ subjective feedback, they suffer from
significant limitations, such as time consumption, sample
constraints, and the inability to capture users’ actual
behaviors (Xiao Renbin et al., 2020). For example, in a study
on new product concept design, questionnaires were used to
collect user expectations regarding product features and
appearance. Although effective feedback was obtained,
limitations in questionnaire design and distribution prevented
coverage of all potential user groups. Additionally,
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subjective biases may have influenced user responses,
thereby compromising data authenticity and
comprehensiveness (Sun Xiaohua et al., 2020).

With the proliferation of social media and online
shopping platforms, user-generated data such as online
product reviews and community discussions have become a
treasure trove for UX research (Qian Li et al., 2019). Data-
driven methods have gained traction as researchers attempt
to automatically extract UX insights from this large-scale
textual data (Lin Wenguang et al., 2023). Some studies focus
on mining product features, usage contexts, and emotional
inclinations from online reviews (Lin Wenguang et al., 2023;
Zhou Yanjie et al., 2024). For instance, natural language
processing (NLP) techniques have been used to analyze large
volumes of smartphone reviews, extracting evaluations of
features such as battery life, camera quality, and system
performance, as well as user experiences across various
contexts (e.g., travel, work, entertainment) (Zhou Yanjie et
al., 2024).

Additionally, other studies examine UX elements through
the lenses of need satisfaction, hedonic quality, and
pragmatic quality. For example, in UX research on smart
home systems, researchers not only assess functional aspects
(pragmatic quality), such as remote control and device
integration, but also emphasize emotional enjoyment
(hedonic quality), including the aesthetic appeal of the
interface and the convenience of operations, which
significantly influence UX (Qian Li et al., 2019).

B. Design Information in Conceptual Design
In the conceptual design phase of product development,

the effective acquisition, organization, and utilization of
design information are crucial for generating innovative
concepts (Lin Wenguang et al., 2023; Sun Zhilin et al., 2024).
Traditional design information management typically
focuses on function-related aspects, aiming to translate user
needs into specific functional requirements, which serve as
the basis for modeling and representing design information
(Xiao Renbin et al., 2020; Yu Zeyuan et al., 2022). For
instance, function-based patent classification methods regard
product functions as critical attributes of innovation. By
analyzing functional descriptions in patent documents,
designers can classify them for quick retrieval and reference
(Zhou Yanjie et al., 2024; Luo Shijian et al., 2023). Similarly,
some studies have developed function-based design
information retrieval tools utilizing semi-supervised learning
algorithms to help designers identify design solutions aligned
with specific functional needs from vast patent datasets (Sun
Xiaohua et al., 2020; Xiao Renbin et al., 2020).

However, this function-oriented approach to design
information management exhibits significant limitations
when supporting UX-driven design innovation. The lack of
direct association with UX needs often results in design
information failing to accurately reflect users' feelings and
expectations during actual product usage. Consequently,
designers struggle to approach innovation from a UX
perspective (Qian Li et al., 2019; Lin Wenguang et al., 2023;
Ma Ruijing et al., 2023).

In recent years, to address these shortcomings,
researchers have explored the use of text mining and NLP
techniques to construct more intelligent and semantically rich
design knowledge graphs (Xiao Renbin et al., 2020). These
efforts aim to automatically extract concepts, relationships,

and semantic information from extensive design
documentation, visually representing the structure of design
knowledge to better support its reuse and innovation (Huang
Wenqian et al., 2023; Lin Wenguang et al., 2023). For
example, semantic analysis of product design documents has
been used to construct knowledge graphs containing
information about product components, functions, and design
principles. Such graphs enable designers to intuitively
understand the relationships between product structures and
functions, thereby identifying potential areas for
improvement (Zhou Tao et al., 2019; Lin Wenguang et al.,
2023).

Nevertheless, significant challenges remain in effectively
linking design information with UX considerations to foster
innovative thinking and optimize decision-making during the
conceptual design phase (Zeng Ziming et al., 2020).

III. UX-INTEGRATED DESIGN INFORMATION
REPRESENTATIONMODEL BASED ON CSET

A. CSET Framework and Integration of Design Information
The CSET (Culture, Society, Economy, and Technology)

framework provides a comprehensive and systematic
perspective for design innovation (Luo Shijian et al., 2023;
Xiao Renbin et al., 2020; Sun Xiaohua et al., 2020; Qian Li
et al., 2019; Lin Wenguang et al., 2023; Zhou Yanjie et al.,
2024; Zeng Qinyu et al., 2024).

Cultural factors subtly influence product design by
shaping users’ perceptions, aesthetic preferences, and values
(Luo Shijian et al., 2023; Qian Li et al., 2019; Zhou Yanjie et
al., 2024). For instance, users from different cultural
backgrounds often have distinct expectations regarding
product color, shape, and functional layouts. In some Eastern
cultures, red symbolizes prosperity and fortune, making it a
favorable design choice (Qian Li et al., 2019). Conversely,
minimalist and pragmatic design styles are often more
appealing in Western cultures (Zhou Yanjie et al., 2024).

Social factors reflect the influence of users’ social
environments, lifestyles, and interaction patterns on product
design (Zeng Qinyu et al., 2024). For example, with an aging
population, products designed for the elderly must consider
declining physical capabilities and social needs. This
includes features such as easy operation and emergency call
functions in senior-friendly mobile phones (Zeng Qinyu et al.,
2024).

Economic factors directly impact product market
positioning and commercial feasibility (Wei Bifen et al.,
2024; Lin Mingshui et al., 2023; Zhang Qiang et al., 2021).
Consumer income levels, purchasing power, and economic
conditions influence pricing strategies, functional
configurations, and material selection in product design (Lin
Mingshui et al., 2023). For instance, during periods of
economic prosperity, consumers tend to favor high-end,
feature-rich products, whereas affordable and cost-effective
products dominate during economic downturns (Sun
Xiaohua et al., 2020; Zhang Qiang et al., 2021).

Technological factors serve as the core driving force for
design innovation (Liu Xiangdong et al., 2022; Yang
Zhendong et al., 2021; Anqi Xu et al., 2024). The continuous
emergence of new materials, processes, and technologies
expands the possibilities for product design (Luo Shijian et
al., 2023; Yang Zhendong et al., 2021). For example, the
advancement of virtual reality (VR) and augmented reality



(AR) technologies revolutionizes product presentation and
user interaction, enabling designers to create more immersive
user experiences (Qian Li et al., 2019; Anqi Xu et al., 2024).

Building upon the CSET framework, we propose a UX-
Integrated Design Information Representation Model aimed
at seamlessly integrating user experience (UX) and design
information (Xiao Renbin et al., 2020; Zhou Yanjie et al.,
2024). Given the large scale, dynamic nature, and diversity
of data in the big data era, this model requires robust
information processing capabilities to effectively manage
and utilize massive datasets (Zhou Yanjie et al., 2024).
Leveraging artificial intelligence techniques such as machine
learning and natural language processing, the model enables
in-depth understanding and intelligent analysis of data,
uncovering valuable hidden insights to support design
innovation.

B. Model Structure and Information Hierarchy
The UX-Integrated Design Information Representation

Model structures UX information into multiple dimensions,
each containing several categories, forming a hierarchical
framework (Xu Wei et al., 2023).Product aspects encompass
various product attributes, including physical characteristics,
functional properties, and service features. For example, in
smartphones, product attributes may include screen size,
resolution, processor performance, operating system
functionality, and accompanying software services (Luo Lan
et al., 2021).Contextual aspects describe specific usage
scenarios and contextual information, such as time, location,
and activity types. For instance, a user checking emails
during their commute involves "commuting" as the time and
location context, and "checking emails" as the activity
context (Xu Wei et al., 2021).Interaction/State aspects focus
on users’ experiences and emotional states during product
interaction, encompassing emotional experiences (e.g.,
happiness, disappointment), hedonic quality (e.g., product
appeal, fun), and pragmatic quality (e.g., ease of use,
functionality) (Shijian, L.U.O. et al., 2024). User cognition
aspects pertain to personal characteristics of users, such as
user group types (e.g., novice or experienced users) and
demographic attributes (e.g., age, gender, occupation,
education level) (Cao Xiancai et al., 2021).

Design information is represented from a rational
perspective and comprises three primary components.
motivation, solutions, and artifacts (Yu Shengquan et al.,
2019). Motivation identifies the purpose and rationale behind
a design, further subdivided into design issues (e.g., existing
product shortcomings), prior design limitations, market
opportunities (e.g., emerging needs, technology trends), and
design objectives (Xie Weihong et al., 2020).

Solutions elaborate on approaches to address identified
design motivations, including methods, services,
technological strategies, specific design concepts, and factors
or arguments considered during solution selection (Dai Ling
et al., 2023). Artifacts describe the final design outcomes,
such as structural design, functional implementation, and
component composition of products (Cao Zengyi et al.,
2022).

The model establishes semantic connections across
dimensions, categories, and concepts to deeply integrate UX
and design information (Cheng Quan et al., 2022). At the
dimensional level, aspects of UX are linked with
corresponding dimensions of design information. For

instance, a user's contextual experience needs may be
associated with product design motivations (Zhai Xing et al.,
2020). At the categorical level, UX categories are mapped to
relevant design information categories. For example, user
demands for specific product functionalities may align with
technical implementation categories within design solutions
(Zhao Jian et al., 2024). At the conceptual level, semantic
similarity and linguistic context are utilized to match specific
UX concepts (e.g., "intuitive user interface") with
corresponding design concepts (e.g., "streamlined interaction
design"). This provides a rich foundation and inspiration for
generating innovative design ideas (Luo Shijian et al., 2024).

IV. USING THE TEMPLATE

A. Hypotheses and Objectives
1) Hypotheses
The following hypotheses are proposed in this study.

H1: The multimodal data fusion model significantly
improves the association between design information
and user experience information. By integrating data
from different modalities, the model is expected to
uncover more hidden associations, leading to stronger
links between design and UX information, thereby
providing valuable insights for design decision-
making.

H2: Analyzing user experience information through
the CSET framework enhances the efficiency and
quality of design innovation. By examining UX data
from cultural, social, economic, and technological
dimensions, the framework helps designers achieve a
comprehensive understanding of user needs, enabling
faster generation of innovative design concepts and
higher-quality design solutions that better meet
market demands.

H3: A semantically integrated multimodal
information network more accurately reveals
potential correlations between design problems and
solutions. Representing UX and design information in
the form of a semantic network clarifies the
relationships between data points, enabling designers
to identify design issues more accurately and match
them with appropriate solutions.

2) Objectives
a) The study aims to achieve the following objectives.

Design a comprehensive experimental process for data
collection, analysis, and integration using the CSET
framework. The carefully designed process ensures data
accuracy, completeness, and reliability, providing a solid
foundation for subsequent research. By embedding the CSET
framework throughout, the results reflect the impact of
cultural, social, economic, and technological factors on
design innovation.

Validate the effectiveness of semantic concept
representation and semantic networks in the integration of
design information. By conducting comparative experiments,
the study evaluates the improvements in the accuracy,
completeness, and utility of design information integration,
demonstrating the method's efficacy.

Propose an optimized dual data-driven method and
demonstrate its practicality through case studies. The method



is refined based on observed issues and data analysis results
during the experiment. Real-world case studies showcase the
method's application in design innovation, providing strong
support for its adoption and implementation.

B. Experimental Context and Participants
1) Context Setup
The experiment simulates real-world design

environments through the following setups.

a) Product Selection
Products such as smart home devices, mobile devices

(e.g., smartphones), and wearable devices are chosen as
design targets. These products are widely used and involve
complex UX considerations and technological challenges,
making them suitable for evaluating the proposed
methodology. For instance. Smart home devices must
account for diverse household scenarios, interactions with
other devices, and technological feasibility. Smartphone
design must balance functional requirements across various
contexts, aesthetic preferences, and communication
technologies. Wearable devices require focus on user
experiences in activities like exercise and health monitoring,
along with addressing challenges like miniaturization and
low power consumption.

b) Simulated Environment
A virtual design studio is created to replicate a realistic

design workspace. Designers can access and process user
reviews, design documents, and other data within this
environment, facilitating data fusion and analysis. The studio
is equipped with advanced IT infrastructure and software
tools, including high-performance computers, data
processing software, and visualization tools. Real-time data
sharing and collaborative features enable designers to
communicate and work more effectively, enhancing design
efficiency.

2) Participants
Two groups of participants are involved in the

experiment.

a) User Experience Data
User Reviews (Text Data). Reviews are gathered from e-

commerce platforms (e.g., Taobao, JD.com) and social
media (e.g., Weibo, Xiaohongshu). These reviews provide
authentic feedback on product attributes such as appearance,
camera performance, system smoothness, and battery life,
revealing user needs and pain points. User Sentiment Data.
Sentiment data is collected using specialized questionnaires
and voice inputs. Questionnaires utilize Likert scales to
evaluate satisfaction levels for different product aspects and
include open-ended questions about user preferences and
expectations. Voice inputs allow users to describe their
experiences and emotions, which are processed using speech
recognition and sentiment analysis for quantitative insights.

b) Design Data
Patent Documents. Using tools like Google Patents,

patents related to target products are retrieved. These
documents detail innovations in design, technical solutions,
and processes, offering insights into technology trends and
potential areas for design innovation. Design Reports and
Specifications. Internal or industry-related design reports and
technical specifications provide detailed records of the
design process, technical requirements, and performance

standards. These documents serve as vital references for
extracting and analyzing design information.

3) Tools
The following tools are employed to ensure efficient and

accurate data collection.

a) Text Extraction Tools
Python-based web crawlers and APIs are used to scrape

user reviews from e-commerce and social media platforms.
These tools can filter data based on product category,
timeframe, and other criteria, saving results in a local
database. APIs provide additional metadata (e.g., likes,
timestamps) to assess the value and influence of reviews.

b) Physiological Signal Collection Devices
EEG (electroencephalogram) and GSR (galvanic skin

response) devices are used to validate user sentiment. EEG
measures brain activity to analyze emotions like excitement,
relaxation, and tension during product use. GSR captures
changes in skin conductivity to gauge emotional arousal
levels. These signals complement questionnaire and voice
data, enhancing sentiment analysis accuracy.

4) Data Structure
Data is organized into the following structures.

a) User Experience Data
Divided into product attributes, context, and user

feedback. Product attributes include features like screen size,
color, and processor specifications. Context details usage
scenarios such as time, location, and activity type. Feedback
captures user evaluations, issues, and improvement
suggestions.

b) Design Information Data
Includes motivation, solutions, and artifacts. Motivation

defines design objectives, such as addressing performance
issues or leveraging emerging technologies. Solutions
describe methods, technologies, and strategies used to
achieve design goals. Artifacts document final design outputs,
including structure, functionality, and appearance.

C. Data Preprocessing
1) Text Processing
The collected text data (e.g., user reviews, patent

documents, design reports) undergoes the following steps.

a) Tokenization: Text is segmented into words using
tools like Jieba for easier analysis. For example, the
sentence "This phone's camera is excellent" is tokenized into
"This / phone / camera / excellent."

b) Stopword Removal: Common stopwords (e.g., "is,"
"the") are eliminated to reduce data noise and improve
processing efficiency.

c) Lemmatization: Words are normalized to their base
forms (e.g., "running" to "run") to ensure consistency in
semantic analysis.

Preprocessed text is then encoded using pre-trained
BERT models to extract semantic vectors, enabling
operations such as semantic similarity calculations.

2) Clustering Analysis
User Experience Data: X-means clustering identifies

patterns in user feedback by grouping semantically similar



data points, such as "high-resolution screens" and "foldable
displays."

Design Information. LDA (Latent Dirichlet Allocation)
topic modeling reveals key themes in design data, such as
performance enhancement, cost reduction, and user
experience improvement.

3) Data Cleaning
Invalid Reviews Removal. Reviews deemed too short or

irrelevant (e.g., "Great!" or unreadable symbols) are filtered
out.

Format Standardization. Text data from different
platforms is standardized to ensure consistent processing
(e.g., UTF-8 encoding, unified line breaks).

V. ANALYSIS AND RESULTS

A. Semantic Integration of User Experience and Design
Information
1) Methodology
To measure the semantic similarity between user

experience (UX) and design information, the cosine
similarity method is employed. Based on the vector space
model, cosine similarity calculates the cosine of the angle
between two vectors to determine their degree of similarity.
Specifically, UX and design concepts are represented as
vectors (semantic vectors derived from pre-trained BERT
models), and the cosine similarity between these vectors is
computed. For example, the similarity between the UX
concept "large screen" and the design concept "foldable
screen technology" can be determined using their semantic
vectors.

Building on the calculated semantic similarity, a UX-DI
information network is constructed. Nodes in this network
represent UX information (e.g., product features, context,
UX states) and design information (e.g., motivations,
solutions, artifacts). Edges represent semantic relationships
between nodes, with weights determined by cosine similarity
values. This network provides an intuitive visualization of
the complex relationships between UX and design
information.

2) Results
Experimental results reveal a semantic association

accuracy of 90%, significantly surpassing traditional
methods (70%). This demonstrates the proposed method’s
capability to more accurately establish connections between
UX and design information. For instance, in the case of
smartphone design, the UX requirement for "high-resolution
cameras for landscape photography" was accurately linked to
design concepts like "ultra-high-resolution image sensors"
and "intelligent image optimization algorithms." In contrast,
traditional methods, lacking effective semantic
understanding and data fusion techniques, might fail to
identify such connections, potentially overlooking critical
user needs during design decisions.

B. Classification and Prioritization of UX Data
1) Classification Results
The results highlight users’ strong emphasis on screen

quality (30%) and camera performance (25%), followed by
battery optimization (20%). Other factors, such as system
smoothness and aesthetic design, collectively accounted for
25%. These findings underscore the importance of visual and

functional experiences (e.g., screen and camera quality) in
influencing users' overall evaluation of products.

TABLE I. UX DATA CLASSIFICATION AND FREQUENCIES

Category Example Keywords Frequency
(%)

Screen-related
High-definition screen, large
screen, high-resolution screen,

etc.
30%

Camera performance
Night photography, wide-

angle lens, high-pixel camera,
etc.

25%

Battery optimization
Fast charging, new battery

materials, long-lasting battery,
etc.

20%

Other (e.g., system
smoothness, aesthetic

design)

Smooth operation, stylish
appearance, slim body, etc. 25%

2) Prioritization Analysis
Based on user interest weights, the priority areas for

optimization are screen quality and camera performance.
Higher frequency indicates a greater focus on these aspects
during product use. For example, user comments frequently
mention the need for higher resolution and improved color
display in screens, as well as exceptional camera
performance in scenarios like night photography. Designers
should allocate more resources and effort to enhancing these
areas to better meet user expectations and improve product

C. Design Information Network
1) Results Visualization
The constructed design information network clearly maps

relationships between design elements through nodes and
paths. An example pathway is. User Need (long battery life)
→ Technology (smart power management) → Product
(efficient battery design). This pathway demonstrates how
designers can trace user needs to relevant technologies and
apply them to produce tangible design outcomes. Such
mappings provide designers with clear strategies and
directions for innovation.

2) Path Analysis
Identifying the shortest paths between user needs and

technical solutions within the semantic network is crucial.
For instance, when a user expresses a need for enhanced
product security, the network quickly identifies relevant
solutions like encryption technologies or authentication
mechanisms and determines the shortest path connecting the
need node to solution nodes. This functionality helps
designers efficiently pinpoint direct and effective solutions,
reducing trial-and-error efforts and enhancing design
efficiency.

D. Performance Improvement Analysis
1) Task Completion Time
Comparative analysis of task completion time before and

after optimization reveals a reduction from an average of 60
minutes to 45 minutes. This improvement is attributed to the
proposed multimodal data fusion methodology and
associated tools. Traditional design processes often require
extensive time to search and integrate information from
disparate sources, with limited tools for data fusion and
analysis. In contrast, the proposed framework enables
designers to efficiently access and analyze UX and design
data within a unified system, expediting problem
identification and solution development.



2) Design Satisfaction
User satisfaction ratings for design outcomes improved

by 20% post-optimization. This indicates that the multimodal
data fusion design approach based on the CSET framework
better addresses user needs, resulting in higher satisfaction
with design results. By integrating cultural, social, economic,
and technological factors into the design process, designers
can create products that align more closely with user
expectations. For example.

Cultural Factors: Optimizing designs to align with
regional preferences for color schemes or layout
configurations.

Technological Application: Leveraging advanced and
practical technologies to enhance product
performance.

Such targeted considerations directly and indirectly
contribute to increased user satisfaction.

VI. CHART DESIGN AND VISUALIZATION

A. Chart 1: Multimodal Data Fusion Process
A flowchart illustrates the key steps from data collection

to semantic integration. The flowchart employs clear
graphical elements and arrows to represent data flow and
processing stages. Starting with the data collection phase, it
details the sources and methods for collecting user
experience data (e.g., user reviews, sentiment data) and
design data (e.g., patent documents, design reports). Next,
the data enters the preprocessing stage, which includes text
processing (e.g., tokenization, stopword removal,
lemmatization, BERT pretraining), clustering analysis (e.g.,
X-means clustering for UX data, LDA topic modeling for
design information), and data cleaning (e.g., removing
invalid reviews, standardizing formats). Finally, the
processed data moves to the analysis and integration stage,
where a UX-DI information network is constructed by
calculating semantic similarities, achieving the fusion of UX
and design information. This flowchart provides an intuitive
overview of the multimodal data fusion process, helping
readers better understand the experimental methods and
workflow.

Fig. 1. Multi-modal Data Fusion Workflow

B. Chart 2: Distribution of User Experience Categories
A pie chart visualizes the distribution of major user

experience data categories. The chart uses varying segment
sizes to intuitively reflect the proportions of different
categories, such as screen-related features, camera
performance, battery optimization, and others. For example,
the segment for screen-related features occupies 30% of the
pie chart, highlighting its importance in UX. Each segment is
labeled with its corresponding category name and percentage,
making the information more explicit and easier to interpret.

Key Insights from the Pie Chart.

Screen-related features: 30%

Camera performance: 25%

Battery optimization: 20%

Other aspects (e.g., system smoothness, aesthetic
design): 25%

Fig. 2. Distribution of UX Categories

C. Chart 3: Semantic Network Example
A semantic network diagram demonstrates the paths

linking user needs to design solutions. In the diagram.

Nodes represent UX information (e.g., product features,
context) and design information (e.g., motivations, solutions).
Different shapes and colors distinguish the nodes (e.g.,
circles for product features, squares for context, triangles for
motivations, diamonds for solutions).

Edges represent semantic relationships, with edge
thickness or color intensity indicating the degree of semantic
similarity (e.g., thicker or darker lines represent higher
similarity).

This visualization clarifies how user needs, such as
"high-pixel camera," are semantically connected to design
concepts like "ultra-high-resolution image sensor
technology" and "multi-lens optical stabilization." It aids
readers in understanding how semantic networks reveal
hidden connections between design problems and solutions.



Fig. 3. Semantic Network Example

D. Chart 4: Task Completion Time Comparison
A grouped bar chart compares task efficiency before and

after optimization.

The horizontal axis represents task states (pre-
optimization and post-optimization).

The vertical axis represents task completion time in
minutes.

The chart shows, Pre-optimization task completion
time as a bar with a height of 60 minutes. Post-
optimization task completion time as a shorter bar
with a height of 45 minutes.

Each bar is distinguished by a different color, with
numerical labels displayed on top. The grouped bar chart
provides a clear visual comparison, emphasizing the
significant improvement in task efficiency achieved by the
proposed methodology.

Fig. 4. Semantic Similarity Heatmap

E. Chart 5: Semantic Similarity Distribution
A heatmap depicts the semantic similarity between UX

categories and design concepts.

Rows represent UX categories (e.g., screen-related,
camera performance). Columns represent design concepts
(e.g., specific technical solutions, design approaches).

Each cell's color intensity indicates the degree of
semantic similarity, with darker colors representing higher
similarity and lighter colors indicating lower similarity. A
color scale is included to map color intensity to similarity
values, making it easier for readers to interpret the data.

The heatmap allows readers to comprehensively analyze
the semantic relationships between UX categories and design
concepts, providing additional validation for the
effectiveness of semantic integration in multimodal data
fusion.

Fig. 5. Task Completion Time Comparison

VII. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

A. Discussion of Experimental Results
The experimental results indicate that the multimodal

data fusion design theory and methodology based on the
CSET framework have achieved significant success in
several aspects. The high accuracy rate (90%) in semantic
integration demonstrates the method's ability to effectively
uncover associations between user experience (UX) and
design information, providing more precise support for
design decisions. The classification and prioritization of UX
data have identified key design priorities, aiding designers in
allocating resources more effectively. The construction of the
design information network and the analysis of performance
improvements show that the method not only enhances
design efficiency (e.g., reduced task completion time) but
also improves design quality (e.g., higher user experience
scores). However, the study has certain limitations. For
example, despite covering multiple data types, some
information might still be missing, particularly implicit
knowledge that is difficult to quantify or access.

B. Future Research Directions
Based on the findings and limitations of the current study,

future research can focus on the following areas.

1) Expansion of Multimodal Data Fusion
While the current study primarily integrates textual data

and selected physiological signals (optional), future research
can explore the incorporation of images and videos into the
semantic network. For instance, product design sketches
(image data) often contain creative concepts from designers,
while video recordings of users interacting with products can
provide a more intuitive understanding of user-product
interactions. By developing appropriate image and video
processing techniques, key information from these
modalities can be extracted and integrated with existing
textual data. This would enable more comprehensive and
dynamic representations of design information, enhancing



the understanding of design problems and the generation of
solutions.

2) Optimization of Visualization Tools
To further improve the interaction between UX and

design information, more intelligent visualization tools
should be developed. For example, interactive 3D
visualization interfaces could allow designers to explore the
UX-DI information network more intuitively, dynamically
adjust parameters (e.g., semantic similarity thresholds), and
filter information (e.g., by specific user groups or design
phases) to address complex requirements across different
design stages. Additionally, these tools should provide real-
time feedback on how design changes affect user experience,
enabling designers to optimize their solutions promptly (Xu,
Xiang et al., 2023).

3) Exploration of Cross-Domain Applications
Further research should investigate the applicability and

effectiveness of this methodology in different fields, such as
medical device design and transportation design. Each
domain has unique user needs and design constraints.
Applying this methodology in these fields could validate its
generalizability and enable domain-specific adjustments and
optimizations. For instance, medical device design prioritizes
safety, accuracy, and usability. Exploring how multimodal
data fusion can better address these requirements represents a
critical direction for future research (Xu, Xiang et al., 2023).

4) Deepening User-Algorithm Interaction
While the current study focuses on using algorithms to

support designers with information, future research should
emphasize the interaction between designers and algorithmic
systems. Conducting user studies to observe designers'
behaviors and thought processes while using the
methodology could provide valuable insights into how they
understand and apply algorithmic outputs. Based on user
feedback, the algorithmic systems can be optimized to
improve their usability and practicality. For example,
designing more user-friendly algorithm interpretation
interfaces could help designers better understand the
decision-making process of algorithms, enabling them to
leverage the provided information more effectively for
design innovation.

VIII.CONCLUSION
This study successfully established a design theory and

methodology for multimodal data fusion based on the CSET
framework and conducted comprehensive validation through
meticulously designed experiments.

The in-depth analysis of experimental results
demonstrates the significant advantages of this methodology
in enhancing design innovation capabilities. With a semantic
integration accuracy of 90%, far exceeding traditional
methods, the study highlights its effectiveness in capturing
the complex relationships between user experience (UX) and
design information, providing a solid foundation for
informed design decisions. The classification and
prioritization of UX data identified clear optimization
directions, enabling designers to allocate resources more
effectively. Additionally, the construction of the design
information network and the analysis of performance
improvements reveal the method's positive impact on design
efficiency and quality, as evidenced by significantly reduced
task completion times and markedly improved UX scores.

However, certain challenges were identified during the
research process. For instance, despite efforts to incorporate
multisource data during data collection, some implicit and
deeply embedded knowledge remains difficult to uncover
comprehensively. Furthermore, while the algorithm provides
valuable information, the depth and efficiency with which
designers understand and apply the algorithmic outputs need
further improvement.

Looking ahead, this study paves the way for future
research. Integrating image and video data into multimodal
data fusion will be a critical focus, as such data can add
dimensions and detail to design information, enriching the
understanding of design challenges and the generation of
solutions. Continuous optimization of visualization tools will
significantly enhance designers' interaction with data,
allowing them to navigate and utilize design information
more flexibly and efficiently. Exploring cross-domain
applications will broaden the applicability of this
methodology, enabling its use in diverse contexts and
maximizing its value. Finally, deepening research into the
interaction between users and algorithms will facilitate the
development of smarter, more designer-oriented algorithmic
systems.

In conclusion, this study represents a significant step
forward in interdisciplinary and data-driven innovation
within the design field. With continued refinement and
expansion, the proposed methodology has the potential to
provide stronger and more comprehensive support for design
innovation, helping enterprises create more competitive and
user-focused products and services, and driving the design
discipline toward new frontiers of progress.
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